cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000594 Ramanujan's tau function (or Ramanujan numbers, or tau numbers).

Original entry on oeis.org

1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432, 10661420, -7109760, -4219488, -12830688, 18643272, 21288960, -25499225, 13865712, -73279080, 24647168
Offset: 1

Views

Author

Keywords

Comments

Coefficients of the cusp form of weight 12 for the full modular group.
It is conjectured that tau(n) is never zero (this has been verified for n < 816212624008487344127999, see the Derickx, van Hoeij, Zeng reference).
M. J. Hopkins mentions that the only known primes p for which tau(p) == 1 (mod p) are 11, 23 and 691, that it is an open problem to decide if there are infinitely many such p and that no others are known below 35000. Simon Plouffe has now searched up to tau(314747) and found no other examples. - N. J. A. Sloane, Mar 25 2007
Number 1 of the 74 eta-quotients listed in Table I of Martin (1996).
With Dedekind's eta function and the discriminant Delta one has eta(z)^24 = Delta(z)/(2*Pi)^12 = Sum_{m >= 1} tau(m)*q^m, with q = exp(2*Pi*i*z), and z in the complex upper half plane, where i is the imaginary unit. Delta is the eigenfunction of the Hecke operator T_n (n >= 1) with eigenvalue tau(n): T_n Delta = tau(n) Delta. From this the formula for tau(m)*tau(n) given below in the formula section follows. See, e.g., the Koecher-Krieg reference, Lemma and Satz, p. 212. Or the Apostol reference, eq. (3) on p. 114 and the first part of section 6.13 on p. 131. - Wolfdieter Lang, Jan 26 2016
For the functional equation satisfied by the Dirichlet series F(s), Re(s) > 7, of a(n) see the Hardy reference, p. 173, (10.9.4). It is (2*Pi)^(-s) * Gamma(s) * F(s) = (2*Pi)^(s-12) * Gamma(12-s) * F(12-s). This is attributed to J. R. Wilton, 1929, on p. 185. - Wolfdieter Lang, Feb 08 2017
Conjecture: |a(n)| with n > 1 can never be a perfect power. This has been verified for n up to 10^6. - Zhi-Wei Sun, Dec 18 2024
Conjecture: The numbers |a(n)| (n = 1,2,3,...) are distinct. This has been verified for the first 10^6 terms. - Zhi-Wei Sun, Dec 21 2024
Conjecture: |a(n)| > 2*n^4 for all n > 2. This has been verified for n = 3..10^6. - Zhi-Wei Sun, Dec 25 2024
Conjecture: a(m)^2 + a(n)^2 can never be a perfect power. This implies Lehmer's conjecture that a(n) is never zero. We have verified that there is no perfect power among a(m)^2 + a(n)^2 with m,n <= 1000 . - Zhi-Wei Sun, Dec 28 2024
Conjecture: The equation |a(m)a(n)| = x^k with m < n, k > 1 and x >= 0 has no solution. This has been verified for m < n <= 5000. - Zhi-Wei Sun, Dec 29 2024
For some conjectures motivated by additive combinatorics, one may consult the link to Question 485138 at MathOverflow. - Zhi-Wei Sun, Jan 25 2025

Examples

			G.f. = q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 + ...
35328 = (-24)*(-1472) = a(2)*a(4) = a(2*4) + 2^11*a(2*4/4) = 84480 + 2048*(-24) = 35328. See a comment on T_n Delta = tau(n) Delta above. - _Wolfdieter Lang_, Jan 21 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 114, 131.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, AMS 2001; see p. 298.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.2).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, lecture X, pp. 161-185.
  • Bruce Jordan and Blair Kelly (blair.kelly(AT)att.net), The vanishing of the Ramanujan tau function, preprint, 2001.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 210 - 212.
  • Yu. I. Manin, Mathematics and Physics, Birkhäuser, Boston, 1981.
  • Henry McKean and Victor Moll, Elliptic Curves, Camb. Univ. Press, 1999, p. 139.
  • M. Ram Murty, The Ramanujan tau-function, pp. 269-288 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Collected Papers of Srinivasa Ramanujan, p. 153, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, A course in Arithmetic, Springer-Verlag, 1973, see p. 98.
  • Joseph H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994, see p. 482.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Don Zagier, Introduction to Modular Forms, Chapter 4 in M. Waldschmidt et al., editors, From Number Theory to Physics, Springer-Verlag, 1992.
  • Don Zagier, "Elliptic modular forms and their applications", in: The 1-2-3 of modular forms, Springer Berlin Heidelberg, 2008, pp. 1-103.

Crossrefs

Cf. A076847 (tau(prime)), A278577 (prime powers), A037955, A027364, A037945, A037946, A037947, A008408 (Leech).
For a(n) mod N for various values of N see A046694, A098108, A126812-...
For primes p such that tau(p) == -1 (mod 23) see A106867.
Cf. A126832(n) = a(n) mod 5.

Programs

  • Julia
    using Nemo
    function DedekindEta(len, r)
        R, z = PolynomialRing(ZZ, "z")
        e = eta_qexp(r, len, z)
        [coeff(e, j) for j in 0:len - 1] end
    RamanujanTauList(len) = DedekindEta(len, 24)
    RamanujanTauList(28) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    M12:=ModularForms(Gamma0(1),12); t1:=Basis(M12)[2]; PowerSeries(t1[1],100); Coefficients($1);
    
  • Magma
    Basis( CuspForms( Gamma1(1), 12), 100)[1]; /* Michael Somos, May 27 2014 */
    
  • Maple
    M := 50; t1 := series(x*mul((1-x^k)^24,k=1..M),x,M); A000594 := n-> coeff(t1,x,n);
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 30} ]], 30], x] (* Or *)
    (* first do *) Needs["NumberTheory`Ramanujan`"] (* then *) Table[ RamanujanTau[n], {n, 30}] (* Dean Hickerson, Jan 03 2003 *)
    max = 28; g[k_] := -BernoulliB[k]/(2k) + Sum[ DivisorSigma[k - 1, n - 1]*q^(n - 1), {n, 2, max + 1}]; CoefficientList[ Series[ 8000*g[4]^3 - 147*g[6]^2, {q, 0, max}], q] // Rest (* Jean-François Alcover, Oct 10 2012, from modular forms *)
    RamanujanTau[Range[40]] (* The function RamanujanTau is now part of Mathematica's core language so there is no longer any need to load NumberTheory`Ramanujan` before using it *) (* Harvey P. Dale, Oct 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^24, {q, 0, n}]; (* Michael Somos, May 27 2014 *)
    a[ n_] := With[{t = Log[q] / (2 Pi I)}, SeriesCoefficient[ Series[ DedekindEta[t]^24, {q, 0, n}], {q, 0, n}]]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * eta(x + x * O(x^n))^24, n))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (sum( i=1, (sqrtint( 8*n - 7) + 1) \ 2,(-1)^i * (2*i - 1) * x^((i^2 - i)/2), O(x^n)))^8, n))};
    
  • PARI
    taup(p,e)={
        if(e==1,
            (65*sigma(p,11)+691*sigma(p,5)-691*252*sum(k=1,p-1,sigma(k,5)*sigma(p-k,5)))/756
        ,
            my(t=taup(p,1));
            sum(j=0,e\2,
                (-1)^j*binomial(e-j,e-2*j)*p^(11*j)*t^(e-2*j)
            )
        )
    };
    a(n)=my(f=factor(n));prod(i=1,#f[,1],taup(f[i,1],f[i,2]));
    \\ Charles R Greathouse IV, Apr 22 2013
    
  • PARI
    \\ compute terms individually (Douglas Niebur, Ill. J. Math., 19, 1975):
    a(n) = n^4*sigma(n) - 24*sum(k=1, n-1, (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k));
    vector(33, n, a(n)) \\ Joerg Arndt, Sep 06 2015
    
  • PARI
    a(n)=ramanujantau(n) \\ Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A000594(n): return n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) # Chai Wah Wu, Nov 08 2022
  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A000594(n)
      ary = [1]
      a = [0] + (1..n - 1).map{|i| s(i)}
      (1..n - 1).each{|i| ary << (1..i).inject(0){|s, j| s - 24 * a[j] * ary[-j]} / i}
      ary
    end
    p A000594(100) # Seiichi Manyama, Mar 26 2017
    
  • Ruby
    def A000594(n)
      ary = [0, 1]
      (2..n).each{|i|
        s, t, u = 0, 1, 0
        (1..n).each{|j|
          t += 9 * j
          u += j
          break if i <= u
          s += (-1) ** (j % 2 + 1) * (2 * j + 1) * (i - t) * ary[-u]
        }
        ary << s / (i - 1)
      }
      ary[1..-1]
    end
    p A000594(100) # Seiichi Manyama, Nov 25 2017
    
  • Sage
    CuspForms( Gamma1(1), 12, prec=100).0; # Michael Somos, May 28 2013
    
  • Sage
    list(delta_qexp(100))[1:] # faster Peter Luschny, May 16 2016
    

Formula

G.f.: x * Product_{k>=1} (1 - x^k)^24 = x*A(x)^8, with the g.f. of A010816.
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^12 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 04 2011
abs(a(n)) = O(n^(11/2 + epsilon)), abs(a(p)) <= 2 p^(11/2) if p is prime. These were conjectured by Ramanujan and proved by Deligne.
Zagier says: The proof of these formulas, if written out from scratch, has been estimated at 2000 pages; in his book Manin cites this as a probable record for the ratio: "length of proof:length of statement" in the whole of mathematics.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u + 48*v + 4096*w) - v^3. - Michael Somos, Jul 19 2004
G.f. A(q) satisfies q * d log(A(q))/dq = A006352(q). - Michael Somos, Dec 09 2013
a(2*n) = A099060(n). a(2*n + 1) = A099059(n). - Michael Somos, Apr 17 2015
a(n) = tau(n) (with tau(0) = 0): tau(m)*tau(n) = Sum_{d| gcd(m,n)} d^11*tau(m*n/d^2), for positive integers m and n. If gcd(m,n) = 1 this gives the multiplicativity of tau. See a comment above with the Koecher-Krieg reference, p. 212, eq. (5). - Wolfdieter Lang, Jan 21 2016
Dirichlet series as product: Sum_{n >= 1} a(n)/n^s = Product_{n >= 1} 1/(1 - a(prime(n))/prime(n)^s + prime(n)^(11-2*s)). See the Mordell link, eq. (2). - Wolfdieter Lang, May 06 2016. See also Hardy, p. 164, eqs. (10.3.1) and (10.3.8). - Wolfdieter Lang, Jan 27 2017
a(n) is multiplicative with a(prime(n)^k) = sqrt(prime(n)^(11))^k*S(k, a(n) / sqrt(prime(n)^(11))), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2, and A076847(n) = a(prime(n)). See A076847 for alpha multiplicativity and examples. - Wolfdieter Lang, May 17 2016. See also Hardy, p. 164, eq. (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
G.f. eta(z)^24 (with q = exp(2*Pi*i*z)) also (E_4(q)^3 - E_6(q)^2) / 1728. See the Hardy reference, p. 166, eq. (10.5.3), with Q = E_4 and R = E_6, given in A004009 and A013973, respectively. - Wolfdieter Lang, Jan 30 2017
a(n) (mod 5) == A126832(n).
a(1) = 1, a(n) = -(24/(n-1))*Sum_{k=1..n-1} A000203(k)*a(n-k) for n > 1. - Seiichi Manyama, Mar 26 2017
G.f.: x*exp(-24*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Euler Transform of [-24, -24, -24, -24, ...]. - Simon Plouffe, Jun 21 2018
a(n) = n^4*sigma(n)-24*Sum_{k=1..n-1} (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k). [See Douglas Niebur link]. - Wesley Ivan Hurt, Jul 22 2025

A297127 a(n) = (1/2) * Sum_{|k|<2*sqrt(p)} A297122(4*p-k^2) where p is n-th prime.

Original entry on oeis.org

33703, 359788, 7410526, 55075448, 823614244, 2238479798, 11171417938, 21787752284, 68501592808, 275166205414, 410273756384, 1185793577918, 2195777500954, 2921567789828, 4984278115408, 10240918233838, 19486182370804, 23813901313094, 41782891225388
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2017

Keywords

Examples

			a(2) = (1/2) * (32768 + 2*16807 + 2*512) = 33703.
tau(2) = 33703 - 33727 = -24.
a(3) = (1/2) * (331776 + 2*161051 + 2*32768 + 2*81) = 359788.
tau(3) = 359788 - 359536 = 252.
		

Crossrefs

Cf. A000594 (tau(n)), A076847, A297122, A297123.

Formula

A076847(n) = A000594(prime(n)) = a(n) - A297123(prime(n)) .

A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

11, 23, 691, 5807
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Nik Lygeros and Olivier Rozier found a new solution to the equation tau(p) + 1 == 0 (mod p) for prime p = 692881373, on September 6 2009. - Seiichi Manyama, Dec 30 2017
a(5) > 8*10^7. - Seiichi Manyama, Jan 01 2018
A superset of A193855. - Jud McCranie, Nov 06 2020

Examples

			tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11.
tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23.
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691.
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020

A278577 Ramanujan function tau(p) as p runs through the prime powers: a(n) = A000594(A000961(n)).

Original entry on oeis.org

1, -24, 252, -1472, 4830, -16744, 84480, -113643, 534612, -577738, 987136, -6905934, 10661420, 18643272, -25499225, -73279080, 128406630, -52843168, -196706304, -182213314, 308120442, -17125708, 2687348496, -1696965207, -1596055698, -5189203740, 6956478662, 2699296768, -15481826884, 9791485272
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, RamanujanTau[Select[Range[100], PrimePowerQ]]] (* Paolo Xausa, May 11 2024 *)
  • PARI
    list(lim) = apply(ramanujantau, select(x -> x == 1 || isprimepower(x), vector(lim, i, i))); \\ Amiram Eldar, Jan 09 2025
  • Python
    from itertools import count, islice
    from sympy import primefactors, divisor_sigma
    def A278577_gen(): # generator of terms
        yield 1
        for n in count(2):
            f = primefactors(n)
            if len(f) == 1:
                p, m = f[0], n+1>>1
                yield (q:=n**4)*(p*n-1)//(p-1)-24*((0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*(m*divisor_sigma(m))**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + q)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m)))
    A278577_list = list(islice(A278577_gen(),10)) # Chai Wah Wu, Nov 11 2022
    

A038542 Primes p such that Ramanujan function tau(p) is divisible by 11.

Original entry on oeis.org

19, 29, 199, 337, 421, 433, 443, 463, 569, 577, 593, 607, 641, 757, 809, 821, 887, 1021, 1049, 1063, 1289, 1439, 1471, 1499, 1607, 1621, 1637, 1901, 1987, 1993, 2221, 2417, 2473, 2539, 2621, 2699, 2803, 2917, 3121, 3319, 3343, 3361, 3433
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

References

  • Robert A. Rankin, Ramanujan's tau-function and its generalizations, in: G. E. Andrews et al. (eds.), Ramanujan Revisited, Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, 1988, pp. 245-268.

Crossrefs

Programs

  • Mathematica
    Select[Range[3500], PrimeQ[#] && Divisible[RamanujanTau[#], 11] &] (* Amiram Eldar, Mar 28 2021 *)
  • PARI
    lista (nn) = {forprime(p=1, nn, if (taup(p) % 11 == 0, print1(p, ", ")););} \\ (with taup(p) defined in A076847) Michel Marcus, Jun 26 2013
    
  • Perl
    use ntheory ":all"; forprimes { say unless ramanujan_tau($) % 11; } 1e4; # _Dana Jacobsen, Sep 05 2015

A038543 Primes p such that Ramanujan function tau(p) is divisible by 13.

Original entry on oeis.org

7, 11, 157, 179, 229, 281, 461, 563, 617, 757, 839, 911, 1049, 1129, 1237, 1259, 1489, 1741, 2129, 2239, 2281, 2423, 2477, 2699, 2843, 2963, 3307, 3347, 3527, 3643, 3659, 3701, 3943, 4057, 4079, 4099, 4129, 4523, 4789, 4799, 5179, 5347
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

References

  • Robert A. Rankin, Ramanujan's tau-function and its generalizations, in: G. E. Andrews et al. (eds.), Ramanujan Revisited, Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, 1988, pp. 245-268.

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[#] && Divisible[RamanujanTau[#], 13] &] (* Amiram Eldar, Mar 28 2021 *)
  • PARI
    isok(p) = isprime(p) && !(ramanujantau(p) % 13); \\ Michel Marcus, Mar 28 2021
  • Perl
    use ntheory ":all"; forprimes { say unless ramanujan_tau($) % 13; } 1e4; # _Dana Jacobsen, Sep 05 2015
    

A321303 a(n) = floor(d(n) * n^(11/2)) where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 90, 841, 6144, 13975, 76188, 88934, 370727, 531441, 1264911, 1068291, 5171875, 2677431, 8049412, 11764186, 20971520, 11708440, 48100548, 21586130, 85865010, 74862807, 96690707, 61735233, 312069853, 146484375, 242333472, 298236431, 546412244, 220911835, 1064772651, 318800733, 1138875187
Offset: 1

Views

Author

Seiichi Manyama, Nov 03 2018

Keywords

Comments

|tau(n)| <= d(n) * n^(11/2) where tau(n) is Ramanujan function. So |tau(n)| <= a(n).
Ramanujan conjectured in 1916 that |tau(p)| <= 2 * p^(11/2) for all primes p and Pierre Deligne proved this conjecture in 1974. [Wikipedia] - Bernard Schott, Oct 24 2019

Crossrefs

Programs

  • Magma
    [Floor(NumberOfDivisors(n)*n^(11/2)): n in [1..32]]; // Marius A. Burtea, Oct 24 2019
    
  • Maple
    f:= n -> floor(numtheory:-tau(n)*n^(11/2)):
    map(f, [$1..100]); # Robert Israel, Oct 23 2019
  • Mathematica
    a[n_] := Floor[DivisorSigma[0, n] * n^(11/2)]; Array[a, 32] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = floor(numdiv(n) * n^(11/2)); \\ Amiram Eldar, Jan 07 2025

A079396 Ramanujan's tau function squared applied to primes.

Original entry on oeis.org

576, 63504, 23328900, 280361536, 285809990544, 333781196644, 47691924412356, 113665876416400, 347571590865984, 16488262627956900, 2792400404276224, 33201691798862596, 94938206778275364, 293289874501264, 7221841938953462016, 2547393791118267204, 26927835455229987600
Offset: 1

Views

Author

Jon Perry, Jan 06 2003

Keywords

Examples

			tau(2)=-24, therefore a(1)=24^2=576.
		

Crossrefs

Programs

  • Mathematica
    RamanujanTau[Prime[Range[20]]]^2 (* Georg Fischer, Sep 28 2024 *)
  • PARI
    a(n) = ramanujantau(prime(n))^2 /* Georg Fischer, Sep 28 2024 */

Formula

a(n) = A076847(n)^2.
a(n) = A000594(A000040(n))^2.
a(n) = A249688(A000040(n)).

A296580 Odd primes p such that tau(p) is congruent to (p-1)/2 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

191, 5399, 1259393
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2017

Keywords

Comments

a(4) > 10^7.
There is no odd prime p (< 10^7) such that tau(p) is congruent to (p+1)/2 (mod p).

Examples

			tau(191) = 2762403350592 and 2762403350592 == 95 mod 191, so a(1) = 191.
tau(5399) = -616400667743946780600 and -616400667743946780600 == 2699 mod 5399, so a(2) = 5399.
tau(1259393) = -600367974333827988240021654527358 and -600367974333827988240021654527358 == 629696 mod 1259393, so a(3) = 1259393.
		

Crossrefs

A297424 a(n) = tau((10^n)-th prime) where tau(n)=A000594(n) is Ramanujan's tau function.

Original entry on oeis.org

-24, 128406630, -1695266465052058, -4467161474022023509680, 2643202687128887204371152330, 5631587063815097155948902224731910, -6022712388820421179671063354886818730888, 3519878895631571325515625172934456394359869922, 452493700789420934344344052367209646628330983653992
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ramanujantau(prime(10^n))}

Formula

a(n) = A076847(10^n) = A000594(A006988(n)).
Showing 1-10 of 10 results.