cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 208 results. Next

A063938 Numbers k that divide tau(k), where tau(k)=A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 88, 90, 91, 92, 96, 98, 100, 105, 108, 112, 115, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 161, 162, 168
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2001

Keywords

Comments

Although most small numbers are in the sequence, it becomes sparser for larger values; e.g., only 504 numbers up to 10000 and only 184 numbers from 10001 to 20000 are in the sequence.

Crossrefs

For the sequence when n is prime see A007659.

Programs

  • Mathematica
    (* First do <Michael De Vlieger, Dec 23 2017 *)
  • PARI
    for (n=1,1000,if(Mod(ramanujantau(n),n)==0,print1(n", "))) \\ Dana Jacobsen, Sep 06 2015
    
  • Perl
    use ntheory ":all"; my @p = grep { !(ramanujan_tau($) % $) } 1..1000; say "@p"; # Dana Jacobsen, Sep 06 2015
    
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A063938_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n, count(max(startvalue,1)))
    A063938_list = list(islice(A063938_gen(),25)) # Chai Wah Wu, Nov 08 2022

Extensions

More terms from Dean Hickerson, Jan 03 2003

A027860 a(n) = (-tau(n) + sigma_11(n)) / 691, where tau is Ramanujan's tau (A000594), sigma_11(n) = Sum_{ d divides n } d^11 (A013959).

Original entry on oeis.org

0, 3, 256, 6075, 70656, 525300, 2861568, 12437115, 45414400, 144788634, 412896000, 1075797268, 2593575936, 5863302600, 12517805568, 25471460475, 49597544448, 93053764671, 168582124800, 296526859818, 506916761600, 846025507836, 1378885295616, 2203231674900
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence is strictly increasing. - Jianing Song, Aug 05 2018

References

  • "Number Theory I", vol. 49 of the Encyc. of Math. Sci.

Crossrefs

Similar sequences: A281788, A281876, A281928, A281956, A281979.

Programs

  • Macsyma
    (sum(n^11*q^n/(1-q^n), n,1,inf)-q*prod(1-q^n,n,1,inf)^24)/691; taylor(%,q,0,24);
    
  • Maple
    N:= 100: # to get a(1) to a(N)
    S:= series(q*mul((1-q^k)^24,k=1..N),q,N+1):
    seq((-coeff(S,q,n) + add(d^11, d = numtheory:-divisors(n)))/691, n=1..N); # Robert Israel, Nov 12 2014
  • Mathematica
    {0}~Join~Array[(-RamanujanTau@ # + DivisorSigma[11, #])/691 &, 24] (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    a(n) = (sigma(n, 11) - polcoeff( x * eta(x + x * O(x^n))^24, n))/691; \\ for n>0; Michel Marcus, Nov 12 2014
    
  • Sage
    def A027860List(len):
        r = list(delta_qexp(len+1))
        return [(sigma(n, 11) - r[n])/691 for n in (1..len)]
    A027860List(24) # Peter Luschny, Aug 20 2018

Formula

a(n) = (A013959(n) - A000594(n))/691. - Michel Marcus, Nov 12 2014

Extensions

More terms from Michel Marcus, Nov 12 2014

A121733 Numbers k such that tau(k) = tau(k+1) mod 691, where tau is Ramanujan's tau function A000594.

Original entry on oeis.org

184, 2103, 3421, 3638, 4342, 5181, 6029, 6233, 8323, 8628, 8721, 9658, 9905, 11322, 11774, 11888, 12410, 12774, 12811, 13063, 13484, 14744, 14906, 15065, 15247, 16581, 16610, 18248, 18396, 18703, 19514, 20476, 20479, 21657, 22089, 22984
Offset: 1

Views

Author

Alexander Adamchuk, Aug 18 2006

Keywords

Comments

Corresponding Ramanujan tau numbers mod 691 are listed in A121734(n) = A046694(a(n)). A121734 begins 483, 209, 21, 632, 650, 541, 546, 281, 666, 440, 397, 576, 18, 251, 356, 207, 532, 361, 121, 642, 288, 167, 348, 505, 561, 0, 108, 166, 97, 492, 58, 255, 632, 151, 679, 185, 141, 587, 0, ....
There are instances of three consecutive equal terms in A046694, with A046694(n) = A046694(n+1) = A046694(n+2). Equivalently there are consecutive equal terms a(n) = a(n+1). The first is A046694(290217) = A046694(290218) = A046694(290219) = 0. - Alexander Adamchuk, Aug 18 2006

Examples

			a(1) = 184 because the first pair of equal consecutive numbers in A046694 is A046694(184) = A046694(185) = 483 = A121734(1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000],Mod[DivisorSigma[11,#1],691]==Mod[DivisorSigma[11,#1+1],691]&]
  • PARI
    is(n)=(ramanujantau(n)-ramanujantau(n+1))%691==0 \\ Charles R Greathouse IV, Feb 08 2017

A121734 Ramanujan tau numbers such that A000594(k) == A000594(k+1) mod 691, or A046694(k) = A046694(k+1).

Original entry on oeis.org

483, 209, 21, 632, 650, 541, 546, 281, 666, 440, 397, 576, 18, 251, 356, 207, 532, 361, 121, 642, 288, 167, 348, 505, 561, 0, 108, 166, 97, 492, 58, 255, 632, 151, 679, 185, 141, 587, 0, 549, 459, 428, 549, 157, 559, 121, 605, 102
Offset: 1

Views

Author

Alexander Adamchuk, Aug 18 2006

Keywords

Comments

The corresponding indices k are listed in A121733.

Examples

			a(1) = 483 because the first pair of equal consecutive numbers in A046694 is A046694(184) = A046694(185) = 483.
		

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];If[f==g,Print[{n,f}]],{n,1,10000}]

Formula

a(n) = mod(A000594(A121733(n)), 691) = A046694(A121733(n)).

A121742 Numbers k such that three consecutive Ramanujan tau numbers are congruent mod 691, or A000594(k) == A000594(k+1) == A000594(k+2) mod 691, or A046694(k) = A046694(k+1) = A046694(k+2).

Original entry on oeis.org

290217, 477155, 1051085, 1153412, 1409635, 1409636, 1641812, 2056412, 2657865, 2945116, 3724928, 4570784, 5115359, 5187777, 5567783, 5720418, 7836078, 8736807, 8932428, 9618716, 9957630, 10175867, 10447914, 10547421, 10982172, 11359120, 11499876, 11735611, 12651355, 13018169, 13515452, 13867914
Offset: 1

Views

Author

Alexander Adamchuk, Aug 19 2006

Keywords

Comments

Corresponding Ramanujan tau numbers mod 691 are listed in A121743(n) = A046694(a(n)). A121743(n) begins {0,276,91,79,0,0,...}. a(n) are the indices of the first number in the Ramanujan tau triples mod 691. All a(n) belong to A121733(n) - indices of the first number in the Ramanujan tau twins mod 691. There are also quadruplets in the Ramanujan tau mod 691 such that A046694(n) = A046694(n+1) = A046694(n+2) = A046694(n+3). The first such Ramanujan tau quadruplet mod 691 starts with A046694(1409635) = 0.

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];h=Mod[DivisorSigma[11,n+2],691];If[f==g&&g==h,Print[{n,f}]],{n,1,1500000}]

Extensions

a(7)-a(16) from Amiram Eldar, Jan 26 2020
More terms from Jud McCranie, Nov 02 2020

A126832 Ramanujan numbers (A000594) read mod 5.

Original entry on oeis.org

1, 1, 2, 3, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 1, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 4, 1, 0, 1, 1, 0, 4, 0, 2, 2, 2, 1, 0, 2, 1, 2, 3, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 4, 1, 3, 4, 0, 2, 0, 2, 1, 0, 0, 2, 4, 0, 0, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 2, 1, 4, 1, 0, 2, 1, 3, 4, 0, 2, 2, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Cf. this sequence (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 5] & /@ Range@ 105 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = n*sigma(n) % 5; \\ Amiram Eldar, Jan 05 2025
  • Python
    from sympy import divisor_sigma
    def A126832(n): return n*divisor_sigma(n)%5 # Chai Wah Wu, Aug 24 2023
    

Formula

a(n) = n*sigma(n) mod 5. - Michel Marcus, Apr 26 2016. See also the Hardy reference, p. 166, (10.5.2), with a proof. - Wolfdieter Lang, Feb 03 2017

A273650 a(n) = A000594(n) mod n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 0, 0, 0, 10, 0, 7, 0, 0, 20, 1, 0, 0, 16, 0, 0, 24, 0, 21, 0, 21, 32, 0, 0, 31, 22, 27, 0, 30, 0, 31, 24, 0, 22, 27, 0, 0, 0, 21, 28, 29, 0, 45, 0, 54, 4, 14, 0, 49, 54, 0, 0, 30, 24, 64, 36, 45, 0, 19, 0, 67, 70, 0, 32, 42, 54, 37, 0, 0, 18
Offset: 1

Views

Author

Seiichi Manyama, May 27 2016

Keywords

Examples

			tau(10) mod 10 = (-115920) mod 10 = 0,
tau(11) mod 11 = 534612 mod 11 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], n]; Array[a, 100] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    a(n)=ramanujantau(n)%n \\ assumes the GRH; Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A273650(n): return -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n # Chai Wah Wu, Nov 08 2022

Formula

a(n) = A000594(n) mod n.
From Amiram Eldar, Jan 08 2025: (Start)
a(A063938(n)) = 0.
abs(a(A295654(n))) = 1. (End)

A290048 Coefficients in expansion of E_6*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -552, 8640, 116000, -4868460, 67855536, -544522240, 2742137280, -8237774250, 10592091400, 3366617856, 113971542048, -1217020425880, 4535746506000, -5415752171520, -19090509870144, 93580817811453, -142801363479240, -80721277168000, 665065363025280
Offset: 2

Views

Author

Seiichi Manyama, Jul 19 2017

Keywords

Crossrefs

Cf. A000594, A010839, A013973 (E_6).
Cf. A282382, A282461 (E_6*E_10*E_14 = E_10^3), A290049, A290050.
E_k*Delta^2: A290178 (k=4), this sequence (k=6), A290180 (k=8), A290181 (k=10), A290182 (k=14).

Programs

  • Mathematica
    terms = 20;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 Hankel matrix [E_6, E_8, E_10 ; E_8, E_10, E_12 ; E_10, E_12, E_14]. G.f. is -691^2*b(q)/(1728^2*250^2).
a(n) = (A290050(n) - 2*691*A290049(n) + 691^2*A282382(n))/(1728^2*250^2).

A290178 Coefficients in expansion of E_4*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 192, -8280, 147200, -1438020, 7491456, -4626880, -246965760, 2112385950, -9443825600, 23625035616, -14413771008, -118710609640, 427914230400, -467038103040, -645319017984, 1640006523477, 2800373100480, -8506579320400, -21655683517440, 108181106829972
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: this sequence (k=4), A290048 (k=6), A290180 (k=8), A290181 (k=10), A290182 (k=14).
Cf. A000594, A004009 (E_4), A290152.

Programs

  • Mathematica
    terms = 21;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_4, E_8, E_10 ; E_6, E_10, E_12 ; E_8, E_12, E_14]. G.f. is 691^2*b(q)/(1728^2*21^2*250).

A128379 A000012^23 * A000594.

Original entry on oeis.org

1, -1, -24, 0, 276, 300, -1748, -4300, 4278, 29026, 22724, -94668, -242398, -18722, 856980, 1472252, -384491, -5299269, -7824968, 2088032, 25655442, 38814478, -69160, -99735912, -175711283, -68736397, 294769680, 686373176, 562588924, -513324396, -2155273788, -2808874356
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: given A000012^k * A000594, k=23 and 24 are the only k's generating sequences with zeros. k = 24 in A128378: (1, 0, -24, -24, 252, 552, -1196, -5496, ...).

Crossrefs

Programs

  • Mathematica
    Nest[Accumulate, RamanujanTau[Range[32]], 23] (* Amiram Eldar, Jan 08 2025 *)

Formula

A000012 (partial sum operator) performed 23 times on A000594.
Showing 1-10 of 208 results. Next