cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A290178 Coefficients in expansion of E_4*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 192, -8280, 147200, -1438020, 7491456, -4626880, -246965760, 2112385950, -9443825600, 23625035616, -14413771008, -118710609640, 427914230400, -467038103040, -645319017984, 1640006523477, 2800373100480, -8506579320400, -21655683517440, 108181106829972
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: this sequence (k=4), A290048 (k=6), A290180 (k=8), A290181 (k=10), A290182 (k=14).
Cf. A000594, A004009 (E_4), A290152.

Programs

  • Mathematica
    terms = 21;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_4, E_8, E_10 ; E_6, E_10, E_12 ; E_8, E_12, E_14]. G.f. is 691^2*b(q)/(1728^2*21^2*250).

A290180 Coefficients in expansion of E_8*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 432, 39960, -1418560, 17312940, -71928864, -462815680, 7500885120, -38038437810, 29000909200, 729783353376, -4661016429888, 13691625085880, -16503845217120, -14982974507520, 45085348093056, 99234456545637, -157805792764560, -1644659689877680
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), this sequence (k=8), A290181 (k=10), A290182 (k=14).
Cf. A000594, A008410 (E_8).

Programs

  • Mathematica
    terms = 19;
    E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
    E8[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_6, E_8, E_12 ; E_8, E_10, E_14 ; E_10, E_12, E_16]. G.f. is -691^2*3617*b(q)/(1728^2*2^3*3*5^3*7^2*467).

A290181 Coefficients in expansion of E_10*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -312, -121680, 1004000, 37942020, -801594864, 6139193600, -11831002560, -151614128250, 1346611783000, -4592794000704, 3738595861728, 15192491492360, 47281379454000, -737660590018560, 2662090686805056, -3290770281735027, -4884703150768920
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), A290180 (k=8), this sequence (k=10), A290182 (k=14).
Cf. A000594, A013974 (E_10).

Programs

  • Mathematica
    terms = 18;
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    E10[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_6, E_10, E_12 ; E_8, E_12, E_14 ; E_10, E_14, E_16]. G.f. is 691^2*3617*b(q)/(1728^2*2^2*3*5^6*7^2*13).

A290182 Coefficients in expansion of E_14*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -72, -194400, -28866400, 13994100, 9650004336, -99683138560, -1007380800, 5570606272950, -32186306471000, -2717893793664, 724443400725408, -2662202398202200, -401005712372400, 19385312101171200, 24633489938571456, -449375771787124707
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), A290180 (k=8), A290181 (k=10), this sequence (k=14).
Cf. A000594, A058550 (E_14).

Programs

  • Mathematica
    terms = 17;
    E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
    E14[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_8, E_10, E_14 ; E_10, E_12, E_16 ; E_12, E_14, E_18]. G.f. is -691^2*3617*43867*b(q)/(1728^2*2^6*3*5^3*7^2*97*7213).

A037944 Coefficients of unique normalized cusp form Delta_18 of weight 18 for full modular group.

Original entry on oeis.org

1, -528, -4284, 147712, -1025850, 2261952, 3225992, -8785920, -110787507, 541648800, -753618228, -632798208, 2541064526, -1703323776, 4394741400, -14721941504, -5429742318, 58495803696, 1487499860, -151530355200
Offset: 1

Views

Author

Keywords

Examples

			G.f. = q - 528*q^2 - 4284*q^3 + 147712*q^4 - 1025850*q^5 + 2261952*q^6 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];
    E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
    E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
    (691/(1728*250))*(E4[x]*E14[x] - E6[x]*E12[x]) + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 27 2018, after Seiichi Manyama *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x * eta(x + x * O(x^n))^24 * (1 - 504 * sum( k=1, n, sigma( k, 5) * x^k)), n))}; /* Michael Somos, Mar 18 2012 */

Formula

Convolution product of A000594 and A013973. - Michael Somos, Mar 18 2012
a(n) == A013965(n) mod 43867. - Seiichi Manyama, Feb 02 2017
G.f.: 691/(1728*250) * (E_4(q)*E_14(q) - E_6(q)*E_12(q)). - Seiichi Manyama, Jul 25 2017

A290152 Coefficients in expansion of E_4*Delta^3 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 168, -12636, 392832, -7335174, 92207808, -804651624, 4626614784, -11834988165, -73870961696, 1115908456740, -7498139072256, 32630722986078, -90379426346496, 94395618447768, 450271639673856, -2625847472007243, 6203580643521072, -3151366507609936
Offset: 3

Views

Author

Seiichi Manyama, Jul 21 2017

Keywords

Crossrefs

Cf. A000594, A004009 (E_4).

Programs

  • Mathematica
    terms = 19;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*QPochhammer[x]^(3*24) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 4 X 4 Hankel matrix [E_4, E_6, E_8, E_10 ; E_6, E_8, E_10, E_12 ; E_8, E_10, E_12, E_14 ; E_10, E_12, E_14, E_16]. G.f. is -691^3*3617*b(q)/(1728^3*2^4*3*5^6*7^2*467).
Showing 1-6 of 6 results.