cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A037947 Coefficients of unique normalized cusp form Delta_26 of weight 26 for full modular group.

Original entry on oeis.org

1, -48, -195804, -33552128, -741989850, 9398592, 39080597192, 3221114880, -808949403027, 35615512800, 8419515299052, 6569640870912, -81651045335314, -1875868665216, 145284580589400, 1125667983917056, -2519900028948078
Offset: 1

Views

Author

Keywords

Examples

			q^2 - 48*q^4 - ...
		

References

  • G. Harder. "A Congruence Between a Siegel and an Elliptic Modular Form." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 247-262.

Crossrefs

Cf. A000594 ((E_4(q)^3 - E_6(q)^2)/12^3), A004009 (E_4(q)), A013973 (E_6(q)), A290182.

Programs

  • Mathematica
    terms = 17;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];
    ((E4[x]^3 - E6[x]^2)/12^3)*E6[x]*E4[x]^2 + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 27 2018, after Seiichi Manyama *)

Formula

G.f.: (E_4(q)^3 - E_6(q)^2)/12^3 * E_6(q) * E_4(q)^2. - Seiichi Manyama, Jun 09 2017
G.f.: -691*3617/(1728*2*3*5^3*7^2*13) * (E_10(q)*E_16(q) - E_12(q)*E_14(q)). - Seiichi Manyama, Jul 25 2017

A290048 Coefficients in expansion of E_6*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -552, 8640, 116000, -4868460, 67855536, -544522240, 2742137280, -8237774250, 10592091400, 3366617856, 113971542048, -1217020425880, 4535746506000, -5415752171520, -19090509870144, 93580817811453, -142801363479240, -80721277168000, 665065363025280
Offset: 2

Views

Author

Seiichi Manyama, Jul 19 2017

Keywords

Crossrefs

Cf. A000594, A010839, A013973 (E_6).
Cf. A282382, A282461 (E_6*E_10*E_14 = E_10^3), A290049, A290050.
E_k*Delta^2: A290178 (k=4), this sequence (k=6), A290180 (k=8), A290181 (k=10), A290182 (k=14).

Programs

  • Mathematica
    terms = 20;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 Hankel matrix [E_6, E_8, E_10 ; E_8, E_10, E_12 ; E_10, E_12, E_14]. G.f. is -691^2*b(q)/(1728^2*250^2).
a(n) = (A290050(n) - 2*691*A290049(n) + 691^2*A282382(n))/(1728^2*250^2).

A290178 Coefficients in expansion of E_4*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 192, -8280, 147200, -1438020, 7491456, -4626880, -246965760, 2112385950, -9443825600, 23625035616, -14413771008, -118710609640, 427914230400, -467038103040, -645319017984, 1640006523477, 2800373100480, -8506579320400, -21655683517440, 108181106829972
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: this sequence (k=4), A290048 (k=6), A290180 (k=8), A290181 (k=10), A290182 (k=14).
Cf. A000594, A004009 (E_4), A290152.

Programs

  • Mathematica
    terms = 21;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_4, E_8, E_10 ; E_6, E_10, E_12 ; E_8, E_12, E_14]. G.f. is 691^2*b(q)/(1728^2*21^2*250).

A290180 Coefficients in expansion of E_8*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 432, 39960, -1418560, 17312940, -71928864, -462815680, 7500885120, -38038437810, 29000909200, 729783353376, -4661016429888, 13691625085880, -16503845217120, -14982974507520, 45085348093056, 99234456545637, -157805792764560, -1644659689877680
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), this sequence (k=8), A290181 (k=10), A290182 (k=14).
Cf. A000594, A008410 (E_8).

Programs

  • Mathematica
    terms = 19;
    E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
    E8[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_6, E_8, E_12 ; E_8, E_10, E_14 ; E_10, E_12, E_16]. G.f. is -691^2*3617*b(q)/(1728^2*2^3*3*5^3*7^2*467).

A290181 Coefficients in expansion of E_10*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -312, -121680, 1004000, 37942020, -801594864, 6139193600, -11831002560, -151614128250, 1346611783000, -4592794000704, 3738595861728, 15192491492360, 47281379454000, -737660590018560, 2662090686805056, -3290770281735027, -4884703150768920
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), A290180 (k=8), this sequence (k=10), A290182 (k=14).
Cf. A000594, A013974 (E_10).

Programs

  • Mathematica
    terms = 18;
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    E10[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_6, E_10, E_12 ; E_8, E_12, E_14 ; E_10, E_14, E_16]. G.f. is 691^2*3617*b(q)/(1728^2*2^2*3*5^6*7^2*13).
Showing 1-5 of 5 results.