cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000594 Ramanujan's tau function (or Ramanujan numbers, or tau numbers).

Original entry on oeis.org

1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432, 10661420, -7109760, -4219488, -12830688, 18643272, 21288960, -25499225, 13865712, -73279080, 24647168
Offset: 1

Views

Author

Keywords

Comments

Coefficients of the cusp form of weight 12 for the full modular group.
It is conjectured that tau(n) is never zero (this has been verified for n < 816212624008487344127999, see the Derickx, van Hoeij, Zeng reference).
M. J. Hopkins mentions that the only known primes p for which tau(p) == 1 (mod p) are 11, 23 and 691, that it is an open problem to decide if there are infinitely many such p and that no others are known below 35000. Simon Plouffe has now searched up to tau(314747) and found no other examples. - N. J. A. Sloane, Mar 25 2007
Number 1 of the 74 eta-quotients listed in Table I of Martin (1996).
With Dedekind's eta function and the discriminant Delta one has eta(z)^24 = Delta(z)/(2*Pi)^12 = Sum_{m >= 1} tau(m)*q^m, with q = exp(2*Pi*i*z), and z in the complex upper half plane, where i is the imaginary unit. Delta is the eigenfunction of the Hecke operator T_n (n >= 1) with eigenvalue tau(n): T_n Delta = tau(n) Delta. From this the formula for tau(m)*tau(n) given below in the formula section follows. See, e.g., the Koecher-Krieg reference, Lemma and Satz, p. 212. Or the Apostol reference, eq. (3) on p. 114 and the first part of section 6.13 on p. 131. - Wolfdieter Lang, Jan 26 2016
For the functional equation satisfied by the Dirichlet series F(s), Re(s) > 7, of a(n) see the Hardy reference, p. 173, (10.9.4). It is (2*Pi)^(-s) * Gamma(s) * F(s) = (2*Pi)^(s-12) * Gamma(12-s) * F(12-s). This is attributed to J. R. Wilton, 1929, on p. 185. - Wolfdieter Lang, Feb 08 2017
Conjecture: |a(n)| with n > 1 can never be a perfect power. This has been verified for n up to 10^6. - Zhi-Wei Sun, Dec 18 2024
Conjecture: The numbers |a(n)| (n = 1,2,3,...) are distinct. This has been verified for the first 10^6 terms. - Zhi-Wei Sun, Dec 21 2024
Conjecture: |a(n)| > 2*n^4 for all n > 2. This has been verified for n = 3..10^6. - Zhi-Wei Sun, Dec 25 2024
Conjecture: a(m)^2 + a(n)^2 can never be a perfect power. This implies Lehmer's conjecture that a(n) is never zero. We have verified that there is no perfect power among a(m)^2 + a(n)^2 with m,n <= 1000 . - Zhi-Wei Sun, Dec 28 2024
Conjecture: The equation |a(m)a(n)| = x^k with m < n, k > 1 and x >= 0 has no solution. This has been verified for m < n <= 5000. - Zhi-Wei Sun, Dec 29 2024
For some conjectures motivated by additive combinatorics, one may consult the link to Question 485138 at MathOverflow. - Zhi-Wei Sun, Jan 25 2025

Examples

			G.f. = q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 + ...
35328 = (-24)*(-1472) = a(2)*a(4) = a(2*4) + 2^11*a(2*4/4) = 84480 + 2048*(-24) = 35328. See a comment on T_n Delta = tau(n) Delta above. - _Wolfdieter Lang_, Jan 21 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 114, 131.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, AMS 2001; see p. 298.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.2).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, lecture X, pp. 161-185.
  • Bruce Jordan and Blair Kelly (blair.kelly(AT)att.net), The vanishing of the Ramanujan tau function, preprint, 2001.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 210 - 212.
  • Yu. I. Manin, Mathematics and Physics, Birkhäuser, Boston, 1981.
  • Henry McKean and Victor Moll, Elliptic Curves, Camb. Univ. Press, 1999, p. 139.
  • M. Ram Murty, The Ramanujan tau-function, pp. 269-288 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Collected Papers of Srinivasa Ramanujan, p. 153, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, A course in Arithmetic, Springer-Verlag, 1973, see p. 98.
  • Joseph H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994, see p. 482.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Don Zagier, Introduction to Modular Forms, Chapter 4 in M. Waldschmidt et al., editors, From Number Theory to Physics, Springer-Verlag, 1992.
  • Don Zagier, "Elliptic modular forms and their applications", in: The 1-2-3 of modular forms, Springer Berlin Heidelberg, 2008, pp. 1-103.

Crossrefs

Cf. A076847 (tau(prime)), A278577 (prime powers), A037955, A027364, A037945, A037946, A037947, A008408 (Leech).
For a(n) mod N for various values of N see A046694, A098108, A126812-...
For primes p such that tau(p) == -1 (mod 23) see A106867.
Cf. A126832(n) = a(n) mod 5.

Programs

  • Julia
    using Nemo
    function DedekindEta(len, r)
        R, z = PolynomialRing(ZZ, "z")
        e = eta_qexp(r, len, z)
        [coeff(e, j) for j in 0:len - 1] end
    RamanujanTauList(len) = DedekindEta(len, 24)
    RamanujanTauList(28) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    M12:=ModularForms(Gamma0(1),12); t1:=Basis(M12)[2]; PowerSeries(t1[1],100); Coefficients($1);
    
  • Magma
    Basis( CuspForms( Gamma1(1), 12), 100)[1]; /* Michael Somos, May 27 2014 */
    
  • Maple
    M := 50; t1 := series(x*mul((1-x^k)^24,k=1..M),x,M); A000594 := n-> coeff(t1,x,n);
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 30} ]], 30], x] (* Or *)
    (* first do *) Needs["NumberTheory`Ramanujan`"] (* then *) Table[ RamanujanTau[n], {n, 30}] (* Dean Hickerson, Jan 03 2003 *)
    max = 28; g[k_] := -BernoulliB[k]/(2k) + Sum[ DivisorSigma[k - 1, n - 1]*q^(n - 1), {n, 2, max + 1}]; CoefficientList[ Series[ 8000*g[4]^3 - 147*g[6]^2, {q, 0, max}], q] // Rest (* Jean-François Alcover, Oct 10 2012, from modular forms *)
    RamanujanTau[Range[40]] (* The function RamanujanTau is now part of Mathematica's core language so there is no longer any need to load NumberTheory`Ramanujan` before using it *) (* Harvey P. Dale, Oct 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^24, {q, 0, n}]; (* Michael Somos, May 27 2014 *)
    a[ n_] := With[{t = Log[q] / (2 Pi I)}, SeriesCoefficient[ Series[ DedekindEta[t]^24, {q, 0, n}], {q, 0, n}]]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * eta(x + x * O(x^n))^24, n))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (sum( i=1, (sqrtint( 8*n - 7) + 1) \ 2,(-1)^i * (2*i - 1) * x^((i^2 - i)/2), O(x^n)))^8, n))};
    
  • PARI
    taup(p,e)={
        if(e==1,
            (65*sigma(p,11)+691*sigma(p,5)-691*252*sum(k=1,p-1,sigma(k,5)*sigma(p-k,5)))/756
        ,
            my(t=taup(p,1));
            sum(j=0,e\2,
                (-1)^j*binomial(e-j,e-2*j)*p^(11*j)*t^(e-2*j)
            )
        )
    };
    a(n)=my(f=factor(n));prod(i=1,#f[,1],taup(f[i,1],f[i,2]));
    \\ Charles R Greathouse IV, Apr 22 2013
    
  • PARI
    \\ compute terms individually (Douglas Niebur, Ill. J. Math., 19, 1975):
    a(n) = n^4*sigma(n) - 24*sum(k=1, n-1, (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k));
    vector(33, n, a(n)) \\ Joerg Arndt, Sep 06 2015
    
  • PARI
    a(n)=ramanujantau(n) \\ Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A000594(n): return n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) # Chai Wah Wu, Nov 08 2022
  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A000594(n)
      ary = [1]
      a = [0] + (1..n - 1).map{|i| s(i)}
      (1..n - 1).each{|i| ary << (1..i).inject(0){|s, j| s - 24 * a[j] * ary[-j]} / i}
      ary
    end
    p A000594(100) # Seiichi Manyama, Mar 26 2017
    
  • Ruby
    def A000594(n)
      ary = [0, 1]
      (2..n).each{|i|
        s, t, u = 0, 1, 0
        (1..n).each{|j|
          t += 9 * j
          u += j
          break if i <= u
          s += (-1) ** (j % 2 + 1) * (2 * j + 1) * (i - t) * ary[-u]
        }
        ary << s / (i - 1)
      }
      ary[1..-1]
    end
    p A000594(100) # Seiichi Manyama, Nov 25 2017
    
  • Sage
    CuspForms( Gamma1(1), 12, prec=100).0; # Michael Somos, May 28 2013
    
  • Sage
    list(delta_qexp(100))[1:] # faster Peter Luschny, May 16 2016
    

Formula

G.f.: x * Product_{k>=1} (1 - x^k)^24 = x*A(x)^8, with the g.f. of A010816.
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^12 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 04 2011
abs(a(n)) = O(n^(11/2 + epsilon)), abs(a(p)) <= 2 p^(11/2) if p is prime. These were conjectured by Ramanujan and proved by Deligne.
Zagier says: The proof of these formulas, if written out from scratch, has been estimated at 2000 pages; in his book Manin cites this as a probable record for the ratio: "length of proof:length of statement" in the whole of mathematics.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u + 48*v + 4096*w) - v^3. - Michael Somos, Jul 19 2004
G.f. A(q) satisfies q * d log(A(q))/dq = A006352(q). - Michael Somos, Dec 09 2013
a(2*n) = A099060(n). a(2*n + 1) = A099059(n). - Michael Somos, Apr 17 2015
a(n) = tau(n) (with tau(0) = 0): tau(m)*tau(n) = Sum_{d| gcd(m,n)} d^11*tau(m*n/d^2), for positive integers m and n. If gcd(m,n) = 1 this gives the multiplicativity of tau. See a comment above with the Koecher-Krieg reference, p. 212, eq. (5). - Wolfdieter Lang, Jan 21 2016
Dirichlet series as product: Sum_{n >= 1} a(n)/n^s = Product_{n >= 1} 1/(1 - a(prime(n))/prime(n)^s + prime(n)^(11-2*s)). See the Mordell link, eq. (2). - Wolfdieter Lang, May 06 2016. See also Hardy, p. 164, eqs. (10.3.1) and (10.3.8). - Wolfdieter Lang, Jan 27 2017
a(n) is multiplicative with a(prime(n)^k) = sqrt(prime(n)^(11))^k*S(k, a(n) / sqrt(prime(n)^(11))), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2, and A076847(n) = a(prime(n)). See A076847 for alpha multiplicativity and examples. - Wolfdieter Lang, May 17 2016. See also Hardy, p. 164, eq. (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
G.f. eta(z)^24 (with q = exp(2*Pi*i*z)) also (E_4(q)^3 - E_6(q)^2) / 1728. See the Hardy reference, p. 166, eq. (10.5.3), with Q = E_4 and R = E_6, given in A004009 and A013973, respectively. - Wolfdieter Lang, Jan 30 2017
a(n) (mod 5) == A126832(n).
a(1) = 1, a(n) = -(24/(n-1))*Sum_{k=1..n-1} A000203(k)*a(n-k) for n > 1. - Seiichi Manyama, Mar 26 2017
G.f.: x*exp(-24*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Euler Transform of [-24, -24, -24, -24, ...]. - Simon Plouffe, Jun 21 2018
a(n) = n^4*sigma(n)-24*Sum_{k=1..n-1} (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k). [See Douglas Niebur link]. - Wesley Ivan Hurt, Jul 22 2025

A064987 a(n) = n*sigma(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 72, 56, 120, 117, 180, 132, 336, 182, 336, 360, 496, 306, 702, 380, 840, 672, 792, 552, 1440, 775, 1092, 1080, 1568, 870, 2160, 992, 2016, 1584, 1836, 1680, 3276, 1406, 2280, 2184, 3600, 1722, 4032, 1892, 3696, 3510, 3312, 2256, 5952
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

Dirichlet convolution of sigma_2(n)=A001157(n) with phi(n)=A000010(n). - Vladeta Jovovic, Oct 27 2002
Equals row sums of triangle A143311 and of triangle A143308. - Gary W. Adamson, Aug 06 2008
a(n) is also the sum of all n's present in A244580, or in other words, a(n) is also the volume (or number of cubes) below the terraces of the n-th level of the staircase described in A244580 (see also A237593). - Omar E. Pol, Oct 11 2018
If n is a superperfect number then sigma(n) is a Mersenne prime and a(n) is a perfect number, a(A019279(k)) = A000396(k), k >= 1, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 15 2020

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. see page 43.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Main diagonal of A319073.
Cf. A000203, A038040, A002618, A000010, A001157, A143308, A143311, A004009, A006352, A000594, A126832, A069097 (Mobius transform), A001001 (inverse Mobius transform), A237593, A244580.

Programs

  • GAP
    a:=List([1..50],n->n*Sigma(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Haskell
    a064987 n = a000203 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jan 01 2019
    
  • Maple
    with(numtheory): [n*sigma(n)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    # DivisorSigma[1,#]&/@Range[80]  (* Harvey P. Dale, Mar 12 2011 *)
  • MuPAD
    numlib::sigma(n)*n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if ( n==0, 0, n * sigma(n))}
    
  • PARI
    { for (n=1, 1000, write("b064987.txt", n, " ", n*sigma(n)) ) } \\ Harry J. Smith, Oct 02 2009
    

Formula

Multiplicative with a(p^e) = p^e * (p^(e+1) - 1) / (p - 1).
G.f.: Sum_{n>0} n^2*x^n/(1-x^n)^2. - Vladeta Jovovic, Oct 27 2002
G.f.: phi_{2, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}. - Michael Somos, Apr 02 2003
G.f. is also (Q - P^2) / 288 where P, Q are Ramanujan Lambert series. - Michael Somos, Apr 02 2003. See the Hardy reference, p. 136, eq. (10.5.4) (with a proof). For Q and P, (10.5.6) and (10.5.5), see E_4 A004009 and E_2 A006352, respectively. - Wolfdieter Lang, Jan 30 2017
Convolution of A000118 and A186690. Dirichlet convolution of A000027 and A000290. - Michael Somos, Mar 25 2012
Dirichlet g.f.: zeta(s-1)*zeta(s-2). - R. J. Mathar, Feb 16 2011
a(n) = A009194(n)*A009242(n). - Michel Marcus, Oct 23 2013
a(n) (mod 5) = A126832(n) = A000594(n) (mod 5). See A126832 for references. - Wolfdieter Lang, Feb 03 2017
L.g.f.: Sum_{k>=1} k*x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
Sum_{k>=1} 1/a(k) = 1.4383899259334187832765458631783591251241657856627653748389234270650138768... - Vaclav Kotesovec, Sep 20 2020
From Peter Bala, Jan 21 2021: (Start)
G.f.: Sum_{n >= 1} n*q^n*(1 + q^n)/(1 - q^n)^3 (use the expansion x*(1 + x)/(1 - x)^3 = x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + ...).
A faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3*q^(3*n) - (n^3 + 3*n^2 - n)*q^(2*n) - (n^3 - 3*n^2 - n)*q^n + n^3 )/(1 - q^n)^3 - differentiate equation 5 in Arndt w.r.t. both x and q and then set x = 1. (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= j, k <= n} sigma_1( gcd(j, k, n) ).
a(n) = Sum_{d divides n} sigma_1(d)*J_2(n/d) = Sum_{d divides n} sigma_2(d)* phi(n/d), where the Jordan totient function J_2(n) = A007434(n). (End)

A018255 Divisors of 30.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 15, 30
Offset: 1

Views

Author

Keywords

Comments

For n > 1, These are also numbers m such that k^4 + (k+1)^4 + ... + (k + m - 1)^4 is prime for some k and numbers m such that k^8 + (k+1)^8 + ... + (k + m - 1)^8 is prime for some k. - Derek Orr, Jun 12 2014
These seem to be the numbers m such that tau(n) = n*sigma(n) mod m for all n. See A098108 (mod 2), A126825 (mod 3), and A126832 (mod 5). - Charles R Greathouse IV, Mar 17 2022
The squarefree 5-smooth numbers: intersection of A051037 and A005117. - Amiram Eldar, Sep 26 2023

Examples

			From the second comment: 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 8^3 = (1 + 2 + 2 + 2 + 4 + 4 + 4 + 8)^2 = 729. - _Bruno Berselli_, Dec 28 2014
		

References

  • Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349.

Crossrefs

Programs

Formula

a(n) = A161715(n-1). - Reinhard Zumkeller, Jun 21 2009
Sum_{i=1..8} A000005(a(i))^3 = (Sum_{i=1..8} A000005(a(i)))^2, see Kordemsky in References and Barbeau et al. in Links section. - Bruno Berselli, Dec 28 2014

A126833 Ramanujan numbers (A000594) read mod 25.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 0, 12, 20, 18, 5, 10, 7, 21, 24, 16, 5, 21, 11, 20, 24, 0, 17, 12, 17, 11, 10, 22, 21, 22, 18, 0, 7, 11, 2, 20, 10, 5, 15, 5, 10, 5, 12, 7, 17, 18, 10, 24, 16, 23, 19, 5, 22, 10, 22, 11, 0, 10, 22, 24, 5, 5
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A013957, A126832 (mod 5^1), this sequence (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 25]; Array[a, 100] (* Amiram Eldar, Jan 04 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 25; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) == n * sigma_9(n) (mod 25) (Andrews and Berndt, 2012, eq. (5.4.2), p. 98). - Amiram Eldar, Jan 04 2025

A126834 Ramanujan numbers (A000594) read mod 125.

Original entry on oeis.org

1, 101, 2, 28, 80, 77, 6, 105, 107, 80, 112, 56, 12, 106, 35, 11, 66, 57, 45, 115, 12, 62, 22, 85, 25, 87, 45, 43, 5, 35, 82, 71, 99, 41, 105, 121, 61, 45, 24, 25, 67, 87, 42, 11, 60, 97, 121, 22, 43, 25, 7, 86, 52, 45, 85, 5, 90, 5, 10, 105, 37, 32, 17, 18, 85, 124, 116, 98, 44
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A126832 (mod 5^1), A126833 (mod 5^2), this sequence (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 125] & /@ Range@ 69 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = ramanujantau(n) % 125; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) = (5*n^2*sigma_7(n) - 4*n*sigma_2(n)) mod 125, for n coprime to 5. - Michel Marcus, Apr 26 2016

A126835 Ramanujan numbers (A000594) read mod 625.

Original entry on oeis.org

1, 601, 252, 403, 455, 202, 131, 105, 107, 330, 237, 306, 387, 606, 285, 261, 316, 557, 170, 240, 512, 562, 147, 210, 150, 87, 295, 293, 380, 35, 582, 571, 349, 541, 230, 621, 436, 295, 24, 275, 442, 212, 542, 511, 560, 222, 371, 147, 418, 150, 257, 336, 552, 420
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A126832 (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), this sequence (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 625]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 625; \\ Amiram Eldar, Jan 05 2025
Showing 1-6 of 6 results.