cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A126832 Ramanujan numbers (A000594) read mod 5.

Original entry on oeis.org

1, 1, 2, 3, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 1, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 4, 1, 0, 1, 1, 0, 4, 0, 2, 2, 2, 1, 0, 2, 1, 2, 3, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 4, 1, 3, 4, 0, 2, 0, 2, 1, 0, 0, 2, 4, 0, 0, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 2, 1, 4, 1, 0, 2, 1, 3, 4, 0, 2, 2, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Cf. this sequence (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 5] & /@ Range@ 105 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = n*sigma(n) % 5; \\ Amiram Eldar, Jan 05 2025
  • Python
    from sympy import divisor_sigma
    def A126832(n): return n*divisor_sigma(n)%5 # Chai Wah Wu, Aug 24 2023
    

Formula

a(n) = n*sigma(n) mod 5. - Michel Marcus, Apr 26 2016. See also the Hardy reference, p. 166, (10.5.2), with a proof. - Wolfdieter Lang, Feb 03 2017

A126833 Ramanujan numbers (A000594) read mod 25.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 0, 12, 20, 18, 5, 10, 7, 21, 24, 16, 5, 21, 11, 20, 24, 0, 17, 12, 17, 11, 10, 22, 21, 22, 18, 0, 7, 11, 2, 20, 10, 5, 15, 5, 10, 5, 12, 7, 17, 18, 10, 24, 16, 23, 19, 5, 22, 10, 22, 11, 0, 10, 22, 24, 5, 5
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A013957, A126832 (mod 5^1), this sequence (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 25]; Array[a, 100] (* Amiram Eldar, Jan 04 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 25; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) == n * sigma_9(n) (mod 25) (Andrews and Berndt, 2012, eq. (5.4.2), p. 98). - Amiram Eldar, Jan 04 2025

A126835 Ramanujan numbers (A000594) read mod 625.

Original entry on oeis.org

1, 601, 252, 403, 455, 202, 131, 105, 107, 330, 237, 306, 387, 606, 285, 261, 316, 557, 170, 240, 512, 562, 147, 210, 150, 87, 295, 293, 380, 35, 582, 571, 349, 541, 230, 621, 436, 295, 24, 275, 442, 212, 542, 511, 560, 222, 371, 147, 418, 150, 257, 336, 552, 420
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A126832 (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), this sequence (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 625]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 625; \\ Amiram Eldar, Jan 05 2025
Showing 1-3 of 3 results.