cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A161715 a(n) = (50*n^7 - 1197*n^6 + 11333*n^5 - 53655*n^4 + 132125*n^3 - 156828*n^2 + 73212*n + 5040)/5040.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 15, 30, 171, 886, 3359, 10143, 26072, 59502, 123931, 240048, 438261, 761754, 1270123, 2043641, 3188202, 4840994, 7176951, 10416034, 14831391, 20758446, 28604967, 38862163, 52116860, 69064806, 90525155, 117456180
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 8} = divisors of 30:
a(n) = A027750(A006218(29) + k + 1), 0 <= k < A000005(30).

Examples

			Differences of divisors of 30 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     3     5     6    10    15    30
     1     1     2     1     4     5    15
        0     1    -1     3     1    10
           1    -2     4    -2     9
             -3     6    -6    11
                 9   -12    17
                  -21    29
                      50
		

Crossrefs

Programs

  • Magma
    [(50*n^7 - 1197*n^6 + 11333*n^5 - 53655*n^4 + 132125*n^3 - 156828*n^2 + 73212*n + 5040)/5040: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    CoefficientList[Series[(1-6*x+15*x^2-19*x^3+8*x^4+18*x^5-51*x^6+84*x^7)/(-1+x)^8, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 -6*x +15*x^2 -19*x^3 +8*x^4 +18*x^5 -51*x^6 +84*x^7) /(-1+x)^8) \\ G. C. Greubel, Jul 16 2017
  • Python
    A161710_list, m = [1], [50, -321, 864, -1249, 1024, -452, 85, 1]
    for _ in range(1,10**2):
        for i in range(7):
            m[i+1]+= m[i]
        A161710_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

a(n) = C(n,0) + C(n,1) + C(n,3) - 3*C(n,4) + 9*C(n,5) - 21*C(n,6) + 50*C(n,7).
G.f.: (1-6*x+15*x^2-19*x^3+8*x^4+18*x^5-51*x^6+84*x^7)/(-1+x)^8. - R. J. Mathar, Jun 18 2009
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Apr 26 2021

A087005 Divisors of 2310.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

2310 = 11# = A002110(5);
divisors of 2310 are squarefree (A005117) and 11-smooth;
a(A000005(2310)) = a(32) = 2310 is the last term.

Crossrefs

Programs

  • Mathematica
    squarefrees[s_List] := Block[{a = Subsets[s]}, SortBy[Table[
    Product[a[[n, m]], {m, 1, Length[a[[n]]]}], {n, 1, Length[a]}], Abs[#] &]]
    A087005 = squarefrees[Prime[Range[5]]](* Fred Daniel Kline, Jan 25 2015 *)
    Divisors[2310] (* Harvey P. Dale, Jun 27 2020 *)
  • PARI
    divisors(2310) \\ Charles R Greathouse IV, Jun 21 2017

A087006 Divisors of 30030.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42, 55, 65, 66, 70, 77, 78, 91, 105, 110, 130, 143, 154, 165, 182, 195, 210, 231, 273, 286, 330, 385, 390, 429, 455, 462, 546, 715, 770, 858, 910, 1001, 1155, 1365, 1430, 2002, 2145, 2310, 2730
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

30030 = 13# = A002110(6);
divisors of 30030 are squarefree (A005117) and 13-smooth;
a(A000005(30030)) = a(64) = 30030 is the last term.

Crossrefs

Programs

A087007 Divisors of 510510.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 21, 22, 26, 30, 33, 34, 35, 39, 42, 51, 55, 65, 66, 70, 77, 78, 85, 91, 102, 105, 110, 119, 130, 143, 154, 165, 170, 182, 187, 195, 210, 221, 231, 238, 255, 273, 286, 330, 357, 374, 385, 390, 429, 442, 455, 462, 510, 546, 561
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

510510 = 17# = A002110(7);
divisors of 510510 are squarefree (A005117) and 17-smooth;
a(A000005(510510)) = a(128) = 510510 is the last term.

Crossrefs

Programs

A087008 Divisors of 9699690.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 51, 55, 57, 65, 66, 70, 77, 78, 85, 91, 95, 102, 105, 110, 114, 119, 130, 133, 143, 154, 165, 170, 182, 187, 190, 195, 209, 210, 221, 231, 238, 247, 255, 266, 273, 285, 286, 323, 330
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

9699690 = 19# = A002110(8);
divisors of 9699690 are squarefree (A005117) and 19-smooth;
a(A000005(9699690)) = a(256) = 9699690 is the last term.

Crossrefs

Programs

A241032 Sum of n-th powers of divisors of 30.

Original entry on oeis.org

8, 72, 1300, 31752, 872644, 25170552, 741453700, 22051219752, 658764967684, 19722455410392, 591076720682500, 17723450167663752, 531571748759349124, 15945186209351359032, 478326193010497869700, 14349345894391097803752
Offset: 0

Views

Author

Vincenzo Librandi, Apr 17 2014

Keywords

Crossrefs

Cf. A018255 (divisors of 30).
Cf. similar sequence listed in A241029.

Programs

  • Magma
    [DivisorSigma(n, 30): n in [0..20]];
  • Mathematica
    Total[#^Range[0, 20] & /@ Divisors[30]]

Formula

G.f.: (8 - 504*x + 11652*x^2 - 129960*x^3 + 760324*x^4 - 2339280* x^5 + 3495600*x^6 - 1944000*x^7) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 5*x)*(1 - 6*x)*(1 - 10*x)*(1 - 15*x)*(1 - 30*x)).
a(n) = (1 + 2^n)*(1 + 3^n)*(1 + 5^n).

A355713 Numbers k such that k and k+1 have the same sum of 5-smooth divisors.

Original entry on oeis.org

175, 2224, 2575, 4975, 7024, 9424, 9775, 11824, 12175, 14224, 14575, 16975, 19024, 21424, 21775, 23824, 24175, 26224, 26575, 28975, 31024, 33424, 33775, 35824, 36175, 38224, 38575, 40975, 43024, 45424, 45775, 47824, 48175, 50224, 50575, 52975, 55024, 57424, 57775
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355584(k) = A355584(k+1).
Equivalently, numbers k such that the largest 5-smooth divisors of k and k+1, A355582(k) and A355582(k+1), have the same sum of divisors (A000203).
For all the terms k, both k and k+1 are not squarefree: each of the two largest 5-smooth divisors, of k and k+1, cannot be squarefree, since the squarefree 5-smooth numbers are the divisors of 30 = 2*3*5 (A018255) whose values of sigma (A000203), {1, 3, 4, 6, 12, 18, 24, 72}, are not shared with sigma of any other 5-smooth number.
Apparently, all the terms are of only two types: numbers k such that A355582(k) = 16 and A355582(k+1) = 25, or numbers k such that A355582(k) = 25 and A355582(k+1) = 16. Both types are infinite sequences: The first type is the sequence of numbers of the form 2224 + 2400*m, where m is not congruent to 1 (mod 5), and the second type is the sequence of numbers of the form 175 + 2400*m, where m is not congruent to 3 (mod 5). If there are no other terms, then this sequence is a linear recurrence with a signature (1,0,0,0,0,0,0,1,-1). The question of the existence of other types is equivalent to the question of the existence of two coprime 5-smooth numbers other than 16 and 25 whose sums of divisors are equal.
Are there runs of 3 consecutive numbers with the same sum of 5-smooth divisors? There are no such runs below 5*10^10.

Examples

			175 is a term since A355584(175) = A355584(176) = 31.
		

Crossrefs

Subsequence of A013929 and A068781.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A333949.

Programs

  • Mathematica
    f[p_, e_] := If[p > 5, 1, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] == s[# + 1] &]
  • PARI
    s(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
    s1 = s(1); for(k = 2, 6e4, s2 = s(k); if(s1 == s2, print1(k-1,", ")); s1 = s2);
Showing 1-7 of 7 results.