A013959
a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.
Original entry on oeis.org
1, 2049, 177148, 4196353, 48828126, 362976252, 1977326744, 8594130945, 31381236757, 100048830174, 285311670612, 743375541244, 1792160394038, 4051542498456, 8649804864648, 17600780175361, 34271896307634, 64300154115093, 116490258898220, 204900053024478
Offset: 1
-
[DivisorSigma(11, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Table[DivisorSigma[11, n], {n, 30}] (* Vincenzo Librandi, Sep 10 2016 *)
-
a(n)=sigma(n,11) \\ Charles R Greathouse IV, Apr 28 2011
-
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^11*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
from sympy import divisor_sigma
def A013959(n): return divisor_sigma(n,11) # Chai Wah Wu, Nov 17 2022
-
[sigma(n,11)for n in range(1,18)] # Zerinvary Lajos, Jun 04 2009
Original entry on oeis.org
0, 3, 6656, 1574235, 109234176, 3489819540, 65281655808, 825351571995, 7736349470720, 57270269768634, 350259092774400, 1829670576438068, 8372440970643456, 34226453991167880, 126958657929489408, 432721923827171355, 1369171676955783168, 4056082931864408991, 11330441127202890240, 30026115193307387658, 75874353000273633280, 183636989491548765276
Offset: 1
a(1) = (1 - 1)/174611 = 0.
a(2) = (524289 - 456)/174611 = 3.
a(3) = (1162261468 - 50652)/174611 = 6656.
Original entry on oeis.org
0, 9, 3968, 296865, 8437248, 129997260, 1312568064, 9727799265, 56923182080, 276480648702, 1154893046400, 4259743681004, 14151477247488, 43011568291320, 121065502097664, 318760489739745, 791380439553024, 1865315725321293, 4197159808767360, 9059718006875214
Offset: 1
a(1) = (1 - 1)/3617 = 0.
a(2) = (32769 - 216)/3617 = 9.
a(3) = (14348908 - (-3348))/3617 = 3968.
Original entry on oeis.org
0, 3, 2944, 391635, 17392128, 385866060, 5303086848, 51332824275, 380176030720, 2279635315794, 11522261136000, 50576242992268, 197196432781824, 695091512105880, 2246019242126592, 6728295917456595, 18857917384178688, 49830812542200039
Offset: 1
a(1) = (1 - 1)/43867 = 0.
a(2) = (131073 - (-528))/43867 = 3.
a(3) = (129140164 - (-4284))/43867 = 2944.
Original entry on oeis.org
0, 27, 134656, 56615355, 6138243072, 282390755580, 7190065585152, 118730950577595, 1408531971420160, 12872835457479666, 95262154452748800, 592216338844654972, 3180419513581234176, 15078667591360144440, 64208193499209765888, 248996850497620053435
Offset: 1
a(1) = (1 - 1)/77683 = 0.
a(2) = (2097153 - (-288))/77683 = 27.
a(3) = (10460353204 - (-128844))/77683 = 134656.
A279889
a(n) = Sum_{k=1..n-1} sigma_5(k)*sigma_5(n-k).
Original entry on oeis.org
0, 1, 66, 1577, 18218, 135550, 738236, 3207785, 11714718, 37347144, 106499470, 277489886, 668981686, 1512360404, 3228797252, 6570019945, 12793050456, 24001960051, 43483452090, 76485144056, 130752372320, 218220937122, 355664809556, 568293832670, 889969136158
Offset: 1
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory,Springer-Verlag, 1976. See p. 140, exercise 10.
- Srinivasa Ramanujan, Collected papers, ed. G. H. Hardy et al., Cambridge, 1927, pp. 136-162.
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- William Duke, Ramanujan and modular forms, in: K. Alladi et al., Srinivasa Ramanujan: His Life, Legacy, and Mathematical Influence, Springer Cham, 2024. See eq. (6).
- D. H. Lehmer, Some functions of Ramanujan, Math. Student, Vol. 27 (1959), pp. 105-116; entire volume. See p. 111, eq. (9).
- Srinivasa Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc., Vol. 22, No. 9 (1916), pp. 159-184.
Cf. Sum_{k=1..n-1} sigma_m(k)*sigma_m(n-k):
A087115 (m=3), this sequence (m=5).
-
a[n_] := (65 * DivisorSigma[11, n] + 691 * DivisorSigma[5, n] - 756 * RamanujanTau[n]) / 174132; Array[a, 25] (* Amiram Eldar, Jan 07 2025 *)
-
a(n) = sum(k=1, n-1, sigma(k, 5)*sigma(n-k, 5)) \\ Felix Fröhlich, Jan 01 2017
-
a(n) = {my(f = factor(n)); (65 * sigma(f, 11) + 691 * sigma(f, 5) - 756 * ramanujantau(n)) / 174132;} \\ Amiram Eldar, Jan 07 2025
Original entry on oeis.org
0, 51, 1287808, 1711273635, 452970333696, 43211657266860, 2038311950075136, 57420813107839395, 1091144797392901120, 15199162675148592018, 164678453263146595200, 1449942615368630353516, 10725152052216567264768, 68394401763888606334680
Offset: 1
a(1) = (1 - 1)/657931 = 0.
a(2) = (33554433 - (-48))/657931 = 51.
a(3) = (847288609444 - (-195804))/657931 = 1287808.
A337032
a(n) = (n*sigma_9(n) - tau(n))/7 = (A282254(n) - A000594(n))/7, where tau is Ramanujan's tau, sigma_9(n) = Sum_{d divides n} d^9.
Original entry on oeis.org
0, 150, 8400, 150300, 1394400, 8656200, 40356000, 153679800, 498153600, 1431378900, 3705270000, 8863150800, 19694152800, 41402744400, 82382680800, 157380332400, 288000115200, 511088547150, 875865085200, 1465721632200, 2382961862400, 3801687211800, 5918070367200, 9075809181600
Offset: 1
a(2) = (n*sigma_9(2) - tau(2))/7 = (2*(1^9+2^9) - (-24))/7 = 1050/7 = 150;
a(3) = (n*sigma_9(3) - tau(3))/7 = (3*(1^9+3^9) - 252)/7 = 58800/7 = 8400.
-
a[n_] := (n * DivisorSigma[9, n] - RamanujanTau[n]) / 7; Array[a, 24] (* Amiram Eldar, Jan 10 2025 *)
-
a(n) = (n*sigma(n, 9) - polcoeff( x * eta(x + x * O(x^n))^24, n))/7;
Showing 1-8 of 8 results.
Comments