cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A027860 a(n) = (-tau(n) + sigma_11(n)) / 691, where tau is Ramanujan's tau (A000594), sigma_11(n) = Sum_{ d divides n } d^11 (A013959).

Original entry on oeis.org

0, 3, 256, 6075, 70656, 525300, 2861568, 12437115, 45414400, 144788634, 412896000, 1075797268, 2593575936, 5863302600, 12517805568, 25471460475, 49597544448, 93053764671, 168582124800, 296526859818, 506916761600, 846025507836, 1378885295616, 2203231674900
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence is strictly increasing. - Jianing Song, Aug 05 2018

References

  • "Number Theory I", vol. 49 of the Encyc. of Math. Sci.

Crossrefs

Similar sequences: A281788, A281876, A281928, A281956, A281979.

Programs

  • Macsyma
    (sum(n^11*q^n/(1-q^n), n,1,inf)-q*prod(1-q^n,n,1,inf)^24)/691; taylor(%,q,0,24);
    
  • Maple
    N:= 100: # to get a(1) to a(N)
    S:= series(q*mul((1-q^k)^24,k=1..N),q,N+1):
    seq((-coeff(S,q,n) + add(d^11, d = numtheory:-divisors(n)))/691, n=1..N); # Robert Israel, Nov 12 2014
  • Mathematica
    {0}~Join~Array[(-RamanujanTau@ # + DivisorSigma[11, #])/691 &, 24] (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    a(n) = (sigma(n, 11) - polcoeff( x * eta(x + x * O(x^n))^24, n))/691; \\ for n>0; Michel Marcus, Nov 12 2014
    
  • Sage
    def A027860List(len):
        r = list(delta_qexp(len+1))
        return [(sigma(n, 11) - r[n])/691 for n in (1..len)]
    A027860List(24) # Peter Luschny, Aug 20 2018

Formula

a(n) = (A013959(n) - A000594(n))/691. - Michel Marcus, Nov 12 2014

Extensions

More terms from Michel Marcus, Nov 12 2014

A282048 Coefficients in q-expansion of E_4^5*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 696, -34632, -167186976, -64422848328, -11387712944304, -1037073232984608, -48892286706157632, -1378097272692189000, -26188038166214133672, -364779879415169299632, -3952277018332870144608, -34798618196377082329632, -257403706082325167732976
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), A282047 (E_4^4*E_6), this sequence (E_4^5*E_6).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

Formula

-24 * A281959(n) = 657931 * a(n) - 457920000 * A037947(n) for n > 0.
Showing 1-2 of 2 results.