cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259692 a(n) = Sum_{k=1..n-1} k^4*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 51, 472, 2963, 10764, 36538, 95936, 222561, 502638, 974245, 1850784, 3234269, 5826680, 8857926, 15093248, 21945012, 35369541, 48358119, 74448464, 98697648, 148971972, 187495262, 276509952, 336495665, 488970662, 590163894, 823791168, 966018241, 1358404776
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001477.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(4);
  • Mathematica
    a[n_]:=Sum[k^4*DivisorSigma[1,k]*DivisorSigma[1,n-k],{k,1,n-1}]; Table[a[n],{n,1,30}] (* Robert P. P. McKone, Sep 09 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, k^4*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

Formula

From Ridouane Oudra, Sep 09 2023: (Start)
a(n) = (n^4/24 - n^5/10)*sigma_1(n) + (5*n^4/84)*sigma_3(n) - (691/635040)*sigma_5(n) - (13/127008)*sigma_11(n) + (691/2520)*A279889(n).
a(n) = (n^4/24 - n^5/10)*sigma_1(n) - (691/1512000 - 5*n^4/84)*sigma_3(n) - (691/756000)*sigma_7(n) + (13/72000)*sigma_11(n) - (691/3150)*A279964(n).
a(n) = (-691/1596672 + n^4/24 - n^5/10)*sigma_1(n) + (5*n^4/84)*sigma_3(n) - (691/145152 - 691*n/120960)*sigma_9(n) - (65/38016)*sigma_11(n) + (691/6048)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)

A259693 a(n) = Sum_{k=1..n-1} k^5*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 99, 1264, 10475, 44820, 185626, 546560, 1454841, 3640950, 7868245, 16042176, 31040789, 59796968, 97525350, 177090560, 276689076, 467100189, 681356055, 1096023200, 1533162960, 2426544252, 3205401854, 4885539840, 6250705625, 9431254430, 11831779350
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001478.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(5);
  • Mathematica
    S[n_, e_] := Sum[k^e * DivisorSigma[1, k] * DivisorSigma[1, n - k], {k, 1, n - 1}]
    f[e_] := Table[S[n, e], {n, 1, 27}];f[5] (* James C. McMahon, Dec 19 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, k^5*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

Formula

From Ridouane Oudra, Dec 08 2023: (Start)
a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) - (691*n/254016)*sigma_5(n) - (65*n/254016)*sigma_11(n) + (691*n/1008)*A279889(n).
a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112 - 691*n/604800)*sigma_3(n) - (691*n/302400)*sigma_7(n) + (13*n/28800)*sigma_11(n) - (691*n/1260)*A279964(n).
a(n) = (-3455*n/3193344 + n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) + (-3455*n/290304 + 691*n^2/48384)*sigma_9(n) - (325*n/76032)*sigma_11(n) + (3455*n/12096)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)

A279964 a(n) = Sum_{k=1..n-1} sigma_3(k)*sigma_7(n-k).

Original entry on oeis.org

0, 1, 138, 3377, 39890, 297550, 1623980, 7065329, 25808790, 82305816, 234756742, 611706830, 1474831246, 3334313204, 7118797268, 14485772017, 28206850488, 52921773667, 95877425634, 168644231672, 288301373792, 481166453010, 784226941604, 1253068878542, 1962356045590
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k] * DivisorSigma[7, n - k], {k, 1, n - 1}], {n, 1, 25}] (* Indranil Ghosh, Mar 12 2017 *)
    a[n_] := (1800 * RamanujanTau[n] + 273 * DivisorSigma[11, n] - 1382 * DivisorSigma[7, n] - 691 * DivisorSigma[3, n]) / 331680; Array[a, 25] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 3)*sigma(n-k,7)); \\ Michel Marcus, Dec 24 2016
    
  • PARI
    a(n) = {my(f = factor(n)); (1800 * ramanujantau(n) + 273 * sigma(f, 11) - 1382 * sigma(f, 7) - 691 * sigma(f, 3)) / 331680;} \\ Amiram Eldar, Jan 07 2025

Formula

36*tau(n) = 5*sigma_3(n) + 10*sigma_7(n) + 21*sigma_5(n) + 2400*a(n) - 5292*A279889(n).
Showing 1-3 of 3 results.