A027860 a(n) = (-tau(n) + sigma_11(n)) / 691, where tau is Ramanujan's tau (A000594), sigma_11(n) = Sum_{ d divides n } d^11 (A013959).
0, 3, 256, 6075, 70656, 525300, 2861568, 12437115, 45414400, 144788634, 412896000, 1075797268, 2593575936, 5863302600, 12517805568, 25471460475, 49597544448, 93053764671, 168582124800, 296526859818, 506916761600, 846025507836, 1378885295616, 2203231674900
Offset: 1
Keywords
References
- "Number Theory I", vol. 49 of the Encyc. of Math. Sci.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Macsyma
(sum(n^11*q^n/(1-q^n), n,1,inf)-q*prod(1-q^n,n,1,inf)^24)/691; taylor(%,q,0,24);
-
Maple
N:= 100: # to get a(1) to a(N) S:= series(q*mul((1-q^k)^24,k=1..N),q,N+1): seq((-coeff(S,q,n) + add(d^11, d = numtheory:-divisors(n)))/691, n=1..N); # Robert Israel, Nov 12 2014
-
Mathematica
{0}~Join~Array[(-RamanujanTau@ # + DivisorSigma[11, #])/691 &, 24] (* Michael De Vlieger, Aug 05 2018 *)
-
PARI
a(n) = (sigma(n, 11) - polcoeff( x * eta(x + x * O(x^n))^24, n))/691; \\ for n>0; Michel Marcus, Nov 12 2014
-
Sage
def A027860List(len): r = list(delta_qexp(len+1)) return [(sigma(n, 11) - r[n])/691 for n in (1..len)] A027860List(24) # Peter Luschny, Aug 20 2018
Formula
Extensions
More terms from Michel Marcus, Nov 12 2014
Comments