cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002191 Possible values for sum of divisors of n.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 24, 28, 30, 31, 32, 36, 38, 39, 40, 42, 44, 48, 54, 56, 57, 60, 62, 63, 68, 72, 74, 78, 80, 84, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 124, 126, 127, 128, 132, 133, 138, 140, 144, 150, 152, 156
Offset: 1

Views

Author

Keywords

Comments

Distinct values attained by the sigma(n) function, in ascending order.
The asymptotic density of this sequence is 0 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			a(100) = 272, a(10^3) = 3696, a(10^4) = 44496, a(10^5) = 510356, a(10^6) = 5691216. - _M. F. Hasler_, Nov 22 2019
		

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007369. A175192(a(n)) = 1, A054973(a(n)) >= 1. - Jaroslav Krizek, Mar 01 2010
See A083531 for the gaps, i.e., first differences. - M. F. Hasler, Mar 12 2018
Subsequence of A211347.

Programs

  • Maple
    N:= 1000: # to get all entries <= N
    select(`<=`,{seq(numtheory[sigma](i),i=1..N)},N); # Robert Israel, Jun 16 2014
  • Mathematica
    lim=1000; Select[Union[DivisorSigma[1,Range[lim]]], #<=lim &] (* T. D. Noe, May 06 2010 *)
  • PARI
    list(lim)=select(n->n<=lim,Set(vector(lim\=1,n,sigma(n)))) \\ Charles R Greathouse IV, Nov 12 2013
    
  • PARI
    A002191_upto(N,M=N\1+1)=Set(apply(t->min(sigma(t),M), [1..N\1-1]))[^-1] \\ Needs big stack for N >= 10^6; slower alternative: {A002191_upto(N)= my(L=List(1),s); for(n=2,N\=1,N<(s=sigma(n))||listput(L,s));Set(L)}
    A2191=A002191_upto(1e4); A002191(n)={#A2191A002191_upto(n*logint(n,10)+n); A2191[n]} \\ - M. F. Hasler, Nov 22 2019

Formula

a(n)/n < log_10(n) + O(1) with O(1) <= 1 for all n. - M. F. Hasler, Nov 22 2019

A258777 Number of points of projective spaces on finite fields.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 38, 40, 42, 44, 48, 50, 54, 57, 60, 62, 63, 65, 68, 72, 73, 74, 80, 82, 84, 85, 90, 91, 98, 102, 104, 108, 110, 114, 121, 122, 126, 127, 128, 129, 132, 133, 138, 140, 150, 152, 156, 158, 164, 168, 170, 174, 180, 182, 183, 192, 194, 198, 200
Offset: 1

Views

Author

Matthieu Pluntz, Jun 09 2015

Keywords

Comments

List of integers of form (p^(k*n) - 1)/(p^k - 1) = sigma_k(p^(n-1)) = sum of d^k over all divisors d of p^(n-1), for some prime p and some positive integers k and n. The cardinality of the field is p^k and the dimension of the space is n-1.
In other words, numbers that are a repunit in at least one base that is a prime power (A246655). - Peter Munn, Oct 21 2020

Examples

			7 = (2^(1*3) - 1)/(2^1 - 1) so 7 is in the sequence. 10 = (3^(2*2) - 1)/(3^2 - 1) so 10 is in the sequence.
		

Crossrefs

Union of 1, A090503 and (A246655 + 1).
Subsequence of A211347.

Programs

  • Mathematica
    max = 200; Join[{1}, Select[{#, DivisorSigma[Range[Max[1, Log[#, max] // Floor]], #]}& /@ Range[2, max], PrimePowerQ[#[[1]]]&][[All, 2]] // Flatten // Union] // Select[#, # <= max&]& (* Jean-François Alcover, Jun 24 2015 after Giovanni Resta *)
  • PARI
    list(lim)=my(v=List([1]),t); lim\=1; if(lim<2,lim=2); for(k=1,logint(lim - 1, 2), for(n=2,logint(lim*(2^k - 1) + 1, 2)\k, forprime(p=2,, t=(p^(k*n) - 1)/(p^k - 1); if(t>lim,break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jun 24 2015

A272883 Numbers m such that sigma_k(x) = m has no solution for any k > 0.

Original entry on oeis.org

2, 11, 16, 19, 22, 23, 25, 27, 29, 34, 35, 37, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 58, 59, 61, 64, 66, 67, 69, 70, 71, 75, 76, 77, 79, 81, 83, 86, 87, 88, 89, 92, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119, 123, 125
Offset: 1

Views

Author

Jaroslav Krizek, May 08 2016

Keywords

Comments

Recall that sigma_k(n) = Sum_{d|n} d^k.
Sigma_0(n), the number of divisors of n, can be any positive integer and so is ignored in this sequence.
Complement of A211347.
Numbers n such that A271606(n) = 0.

Crossrefs

Cf. Sequences of sigma_k(n) for k=0-24: A000005 (k=0), A000203 (k=1), A001157-A001160 (k=2-5), A013954-A013972 (k=6-24).

Programs

  • Magma
    [n: n in [1..2^7] | [n] notsubset Set(Sort([DivisorSigma(k,n): n in [1..2^7+1], k in [1..2^7+1] | DivisorSigma(k,n) lt 2^7+1]))];

A379723 Possible values of the sum of squares of divisors function (A001157).

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 85, 91, 122, 130, 170, 210, 250, 260, 290, 341, 362, 455, 500, 530, 546, 610, 651, 820, 842, 850, 962, 1050, 1220, 1300, 1365, 1370, 1450, 1682, 1700, 1810, 1850, 1911, 2210, 2366, 2451, 2500, 2562, 2650, 2810, 2900, 3172, 3255, 3410, 3482
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Comments

The distinct values of the sigma_2(n) function, in ascending order.
The asymptotic density of this sequence is 0 (Niven, 1951).
5460 = sigma_2(60) and 5461 = sigma_2(64) are two consecutive integers in this sequence. Are there any other such pairs? There are none below 10^10.

Crossrefs

A066872 is a subsequence.
Subsequence of A211347.

Programs

  • Mathematica
    seq[lim_] := Select[Union[DivisorSigma[2, Range[lim]]], # <= lim &]; seq[3500]
  • PARI
    is(n) = invsigmaNum(n, 2) > 0; \\ Amiram Eldar, Jan 03 2025, using Max Alekseyev's invphi.gp

A336488 Values taken by all the Jordan totient functions J_k(m) for k >= 1 and m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

The asymptotic density of this sequence is 0 (Rao and Murty, 1979).
First differs from A221178 at n = 75, since a(75) = J_3(6) = 182 is not a term of A221178.

Crossrefs

Programs

  • Mathematica
    phiQ[m_] := Select[Range[m + 1, 2 m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; jor[k_, n_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; jorval[k_, mx_] := jor[k, #] & /@ Range[Floor@Surd[mx*Zeta[k], k]]; mx = 300; Select[Union @ Flatten[{Select[Range[mx], phiQ], jorval[#, mx] & /@ Range[2, Floor[Log2[mx]]]}], # <= mx &] (* using code by Jean-François Alcover at A002202 *)
Showing 1-5 of 5 results.