cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A121734 Ramanujan tau numbers such that A000594(k) == A000594(k+1) mod 691, or A046694(k) = A046694(k+1).

Original entry on oeis.org

483, 209, 21, 632, 650, 541, 546, 281, 666, 440, 397, 576, 18, 251, 356, 207, 532, 361, 121, 642, 288, 167, 348, 505, 561, 0, 108, 166, 97, 492, 58, 255, 632, 151, 679, 185, 141, 587, 0, 549, 459, 428, 549, 157, 559, 121, 605, 102
Offset: 1

Views

Author

Alexander Adamchuk, Aug 18 2006

Keywords

Comments

The corresponding indices k are listed in A121733.

Examples

			a(1) = 483 because the first pair of equal consecutive numbers in A046694 is A046694(184) = A046694(185) = 483.
		

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];If[f==g,Print[{n,f}]],{n,1,10000}]

Formula

a(n) = mod(A000594(A121733(n)), 691) = A046694(A121733(n)).

A121742 Numbers k such that three consecutive Ramanujan tau numbers are congruent mod 691, or A000594(k) == A000594(k+1) == A000594(k+2) mod 691, or A046694(k) = A046694(k+1) = A046694(k+2).

Original entry on oeis.org

290217, 477155, 1051085, 1153412, 1409635, 1409636, 1641812, 2056412, 2657865, 2945116, 3724928, 4570784, 5115359, 5187777, 5567783, 5720418, 7836078, 8736807, 8932428, 9618716, 9957630, 10175867, 10447914, 10547421, 10982172, 11359120, 11499876, 11735611, 12651355, 13018169, 13515452, 13867914
Offset: 1

Views

Author

Alexander Adamchuk, Aug 19 2006

Keywords

Comments

Corresponding Ramanujan tau numbers mod 691 are listed in A121743(n) = A046694(a(n)). A121743(n) begins {0,276,91,79,0,0,...}. a(n) are the indices of the first number in the Ramanujan tau triples mod 691. All a(n) belong to A121733(n) - indices of the first number in the Ramanujan tau twins mod 691. There are also quadruplets in the Ramanujan tau mod 691 such that A046694(n) = A046694(n+1) = A046694(n+2) = A046694(n+3). The first such Ramanujan tau quadruplet mod 691 starts with A046694(1409635) = 0.

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];h=Mod[DivisorSigma[11,n+2],691];If[f==g&&g==h,Print[{n,f}]],{n,1,1500000}]

Extensions

a(7)-a(16) from Amiram Eldar, Jan 26 2020
More terms from Jud McCranie, Nov 02 2020

A134670 First position k such that A046694(k) = A046694(k+1) =.. 0 are n consecutive zeros starting with A046694(k), where A046694 = Ramanujan tau numbers mod 691.

Original entry on oeis.org

1381, 16581, 290217, 1409635, 1118176194, 107792931954, 673751534392, 2587409974788
Offset: 1

Views

Author

Alexander Adamchuk, Nov 05 2007

Keywords

Comments

Most probably a(5) = 1118176194, because it is a starting point of a string of 5 zeros, but the fact that this is the least such number needs to be confirmed.
Note that zeros of A046694(n) have the indices equal to the terms of arithmetic progressions of the type k*p, where primes p belong to A134671. Thus: a(1) = 1381 = 2*691 - 1, a(2) = 16581 = 3*5527 = 3*(8*691 - 1), a(3) = 290217 = 3*96739 = 3*(140*691 - 1), a(4) = 1409635 = 5*281927 = 5*(408*691 - 1), a(5) = 1118176194 = 6*186362699 = 6*(269700*691 - 1).
Also, note that all listed terms have the form a(n) = k*p - 1, where prime p is a prime of the form p = 2m*691 - 1 that belong to A134671. a(1) = 2*691 - 1, a(2) = 2*8291 - 1, a(3) = 2*145109 - 1, a(4) = 4*352409 - 1, a(5) = 5*223635239 - 1.

Examples

			a(1) = 1381 because A046694(1381) = 0 is the first zero in A046694(n).
a(2) = 16581 because A046694(16581) = A046694(16582) = 0 are the first two consecutive zeros in A046694(n).
		

Crossrefs

Programs

  • Maple
    A134670 := proc(n)
        option remember;
        if n = 1 then
            1381 ;
        else
            for a from procname(n-1)+1 do
                wrks := true;
                for k from a to a+n-1 do
                    if A046694(k) <> 0 then
                        wrks := false ;
                        break;
                    end if;
                end do:
                if wrks then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Feb 01 2013

Extensions

a(5) confirmed by Jud McCranie Oct 17 2020
a(6) by Jud McCranie Oct 17 2020
a(7) by Jud McCranie Oct 19 2020
a(8) by Jud McCranie Oct 22 2020

A337916 Numbers k such that four (or more) consecutive Ramanujan tau numbers are congruent mod 691, or A000594(k) == A000594(k+1) == A000594(k+2) == A000594(k+3) mod 691, or A046694(k) = A046694(k+1) = A046694(k+2) = A046694(k+3).

Original entry on oeis.org

1409635, 74627996, 98011434, 109454388, 153236152, 191545190, 392460356, 427203833, 497768756, 504982791, 538208841, 538565394, 541301742, 549096232, 590970836, 591800035, 623392556, 660872395, 698269314, 779613836, 796944116, 839316232, 884093036, 1045217422, 1118176194
Offset: 1

Views

Author

Jud McCranie, Nov 02 2020

Keywords

Comments

The corresponding Ramanujan tau numbers mod 691 are listed in A337917(n) = A046694(a(n)). See A121742 for more information.

Examples

			Ramajuan tau A000594(1045217422) == A000594(1045217423) == A000594(1045217424) == A000594(1045217425) == 269, so 1045217422 is in the sequence.
		

Crossrefs

A000594 Ramanujan's tau function (or Ramanujan numbers, or tau numbers).

Original entry on oeis.org

1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432, 10661420, -7109760, -4219488, -12830688, 18643272, 21288960, -25499225, 13865712, -73279080, 24647168
Offset: 1

Views

Author

Keywords

Comments

Coefficients of the cusp form of weight 12 for the full modular group.
It is conjectured that tau(n) is never zero (this has been verified for n < 816212624008487344127999, see the Derickx, van Hoeij, Zeng reference).
M. J. Hopkins mentions that the only known primes p for which tau(p) == 1 (mod p) are 11, 23 and 691, that it is an open problem to decide if there are infinitely many such p and that no others are known below 35000. Simon Plouffe has now searched up to tau(314747) and found no other examples. - N. J. A. Sloane, Mar 25 2007
Number 1 of the 74 eta-quotients listed in Table I of Martin (1996).
With Dedekind's eta function and the discriminant Delta one has eta(z)^24 = Delta(z)/(2*Pi)^12 = Sum_{m >= 1} tau(m)*q^m, with q = exp(2*Pi*i*z), and z in the complex upper half plane, where i is the imaginary unit. Delta is the eigenfunction of the Hecke operator T_n (n >= 1) with eigenvalue tau(n): T_n Delta = tau(n) Delta. From this the formula for tau(m)*tau(n) given below in the formula section follows. See, e.g., the Koecher-Krieg reference, Lemma and Satz, p. 212. Or the Apostol reference, eq. (3) on p. 114 and the first part of section 6.13 on p. 131. - Wolfdieter Lang, Jan 26 2016
For the functional equation satisfied by the Dirichlet series F(s), Re(s) > 7, of a(n) see the Hardy reference, p. 173, (10.9.4). It is (2*Pi)^(-s) * Gamma(s) * F(s) = (2*Pi)^(s-12) * Gamma(12-s) * F(12-s). This is attributed to J. R. Wilton, 1929, on p. 185. - Wolfdieter Lang, Feb 08 2017
Conjecture: |a(n)| with n > 1 can never be a perfect power. This has been verified for n up to 10^6. - Zhi-Wei Sun, Dec 18 2024
Conjecture: The numbers |a(n)| (n = 1,2,3,...) are distinct. This has been verified for the first 10^6 terms. - Zhi-Wei Sun, Dec 21 2024
Conjecture: |a(n)| > 2*n^4 for all n > 2. This has been verified for n = 3..10^6. - Zhi-Wei Sun, Dec 25 2024
Conjecture: a(m)^2 + a(n)^2 can never be a perfect power. This implies Lehmer's conjecture that a(n) is never zero. We have verified that there is no perfect power among a(m)^2 + a(n)^2 with m,n <= 1000 . - Zhi-Wei Sun, Dec 28 2024
Conjecture: The equation |a(m)a(n)| = x^k with m < n, k > 1 and x >= 0 has no solution. This has been verified for m < n <= 5000. - Zhi-Wei Sun, Dec 29 2024
For some conjectures motivated by additive combinatorics, one may consult the link to Question 485138 at MathOverflow. - Zhi-Wei Sun, Jan 25 2025

Examples

			G.f. = q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 + ...
35328 = (-24)*(-1472) = a(2)*a(4) = a(2*4) + 2^11*a(2*4/4) = 84480 + 2048*(-24) = 35328. See a comment on T_n Delta = tau(n) Delta above. - _Wolfdieter Lang_, Jan 21 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 114, 131.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, AMS 2001; see p. 298.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.2).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, lecture X, pp. 161-185.
  • Bruce Jordan and Blair Kelly (blair.kelly(AT)att.net), The vanishing of the Ramanujan tau function, preprint, 2001.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 210 - 212.
  • Yu. I. Manin, Mathematics and Physics, Birkhäuser, Boston, 1981.
  • Henry McKean and Victor Moll, Elliptic Curves, Camb. Univ. Press, 1999, p. 139.
  • M. Ram Murty, The Ramanujan tau-function, pp. 269-288 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Collected Papers of Srinivasa Ramanujan, p. 153, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, A course in Arithmetic, Springer-Verlag, 1973, see p. 98.
  • Joseph H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994, see p. 482.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Don Zagier, Introduction to Modular Forms, Chapter 4 in M. Waldschmidt et al., editors, From Number Theory to Physics, Springer-Verlag, 1992.
  • Don Zagier, "Elliptic modular forms and their applications", in: The 1-2-3 of modular forms, Springer Berlin Heidelberg, 2008, pp. 1-103.

Crossrefs

Cf. A076847 (tau(prime)), A278577 (prime powers), A037955, A027364, A037945, A037946, A037947, A008408 (Leech).
For a(n) mod N for various values of N see A046694, A098108, A126812-...
For primes p such that tau(p) == -1 (mod 23) see A106867.
Cf. A126832(n) = a(n) mod 5.

Programs

  • Julia
    using Nemo
    function DedekindEta(len, r)
        R, z = PolynomialRing(ZZ, "z")
        e = eta_qexp(r, len, z)
        [coeff(e, j) for j in 0:len - 1] end
    RamanujanTauList(len) = DedekindEta(len, 24)
    RamanujanTauList(28) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    M12:=ModularForms(Gamma0(1),12); t1:=Basis(M12)[2]; PowerSeries(t1[1],100); Coefficients($1);
    
  • Magma
    Basis( CuspForms( Gamma1(1), 12), 100)[1]; /* Michael Somos, May 27 2014 */
    
  • Maple
    M := 50; t1 := series(x*mul((1-x^k)^24,k=1..M),x,M); A000594 := n-> coeff(t1,x,n);
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 30} ]], 30], x] (* Or *)
    (* first do *) Needs["NumberTheory`Ramanujan`"] (* then *) Table[ RamanujanTau[n], {n, 30}] (* Dean Hickerson, Jan 03 2003 *)
    max = 28; g[k_] := -BernoulliB[k]/(2k) + Sum[ DivisorSigma[k - 1, n - 1]*q^(n - 1), {n, 2, max + 1}]; CoefficientList[ Series[ 8000*g[4]^3 - 147*g[6]^2, {q, 0, max}], q] // Rest (* Jean-François Alcover, Oct 10 2012, from modular forms *)
    RamanujanTau[Range[40]] (* The function RamanujanTau is now part of Mathematica's core language so there is no longer any need to load NumberTheory`Ramanujan` before using it *) (* Harvey P. Dale, Oct 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^24, {q, 0, n}]; (* Michael Somos, May 27 2014 *)
    a[ n_] := With[{t = Log[q] / (2 Pi I)}, SeriesCoefficient[ Series[ DedekindEta[t]^24, {q, 0, n}], {q, 0, n}]]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * eta(x + x * O(x^n))^24, n))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (sum( i=1, (sqrtint( 8*n - 7) + 1) \ 2,(-1)^i * (2*i - 1) * x^((i^2 - i)/2), O(x^n)))^8, n))};
    
  • PARI
    taup(p,e)={
        if(e==1,
            (65*sigma(p,11)+691*sigma(p,5)-691*252*sum(k=1,p-1,sigma(k,5)*sigma(p-k,5)))/756
        ,
            my(t=taup(p,1));
            sum(j=0,e\2,
                (-1)^j*binomial(e-j,e-2*j)*p^(11*j)*t^(e-2*j)
            )
        )
    };
    a(n)=my(f=factor(n));prod(i=1,#f[,1],taup(f[i,1],f[i,2]));
    \\ Charles R Greathouse IV, Apr 22 2013
    
  • PARI
    \\ compute terms individually (Douglas Niebur, Ill. J. Math., 19, 1975):
    a(n) = n^4*sigma(n) - 24*sum(k=1, n-1, (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k));
    vector(33, n, a(n)) \\ Joerg Arndt, Sep 06 2015
    
  • PARI
    a(n)=ramanujantau(n) \\ Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A000594(n): return n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) # Chai Wah Wu, Nov 08 2022
  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A000594(n)
      ary = [1]
      a = [0] + (1..n - 1).map{|i| s(i)}
      (1..n - 1).each{|i| ary << (1..i).inject(0){|s, j| s - 24 * a[j] * ary[-j]} / i}
      ary
    end
    p A000594(100) # Seiichi Manyama, Mar 26 2017
    
  • Ruby
    def A000594(n)
      ary = [0, 1]
      (2..n).each{|i|
        s, t, u = 0, 1, 0
        (1..n).each{|j|
          t += 9 * j
          u += j
          break if i <= u
          s += (-1) ** (j % 2 + 1) * (2 * j + 1) * (i - t) * ary[-u]
        }
        ary << s / (i - 1)
      }
      ary[1..-1]
    end
    p A000594(100) # Seiichi Manyama, Nov 25 2017
    
  • Sage
    CuspForms( Gamma1(1), 12, prec=100).0; # Michael Somos, May 28 2013
    
  • Sage
    list(delta_qexp(100))[1:] # faster Peter Luschny, May 16 2016
    

Formula

G.f.: x * Product_{k>=1} (1 - x^k)^24 = x*A(x)^8, with the g.f. of A010816.
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^12 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 04 2011
abs(a(n)) = O(n^(11/2 + epsilon)), abs(a(p)) <= 2 p^(11/2) if p is prime. These were conjectured by Ramanujan and proved by Deligne.
Zagier says: The proof of these formulas, if written out from scratch, has been estimated at 2000 pages; in his book Manin cites this as a probable record for the ratio: "length of proof:length of statement" in the whole of mathematics.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u + 48*v + 4096*w) - v^3. - Michael Somos, Jul 19 2004
G.f. A(q) satisfies q * d log(A(q))/dq = A006352(q). - Michael Somos, Dec 09 2013
a(2*n) = A099060(n). a(2*n + 1) = A099059(n). - Michael Somos, Apr 17 2015
a(n) = tau(n) (with tau(0) = 0): tau(m)*tau(n) = Sum_{d| gcd(m,n)} d^11*tau(m*n/d^2), for positive integers m and n. If gcd(m,n) = 1 this gives the multiplicativity of tau. See a comment above with the Koecher-Krieg reference, p. 212, eq. (5). - Wolfdieter Lang, Jan 21 2016
Dirichlet series as product: Sum_{n >= 1} a(n)/n^s = Product_{n >= 1} 1/(1 - a(prime(n))/prime(n)^s + prime(n)^(11-2*s)). See the Mordell link, eq. (2). - Wolfdieter Lang, May 06 2016. See also Hardy, p. 164, eqs. (10.3.1) and (10.3.8). - Wolfdieter Lang, Jan 27 2017
a(n) is multiplicative with a(prime(n)^k) = sqrt(prime(n)^(11))^k*S(k, a(n) / sqrt(prime(n)^(11))), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2, and A076847(n) = a(prime(n)). See A076847 for alpha multiplicativity and examples. - Wolfdieter Lang, May 17 2016. See also Hardy, p. 164, eq. (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
G.f. eta(z)^24 (with q = exp(2*Pi*i*z)) also (E_4(q)^3 - E_6(q)^2) / 1728. See the Hardy reference, p. 166, eq. (10.5.3), with Q = E_4 and R = E_6, given in A004009 and A013973, respectively. - Wolfdieter Lang, Jan 30 2017
a(n) (mod 5) == A126832(n).
a(1) = 1, a(n) = -(24/(n-1))*Sum_{k=1..n-1} A000203(k)*a(n-k) for n > 1. - Seiichi Manyama, Mar 26 2017
G.f.: x*exp(-24*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Euler Transform of [-24, -24, -24, -24, ...]. - Simon Plouffe, Jun 21 2018
a(n) = n^4*sigma(n)-24*Sum_{k=1..n-1} (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k). [See Douglas Niebur link]. - Wesley Ivan Hurt, Jul 22 2025

A013959 a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.

Original entry on oeis.org

1, 2049, 177148, 4196353, 48828126, 362976252, 1977326744, 8594130945, 31381236757, 100048830174, 285311670612, 743375541244, 1792160394038, 4051542498456, 8649804864648, 17600780175361, 34271896307634, 64300154115093, 116490258898220, 204900053024478
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Related to congruence properties of the Ramanujan tau function since A000594(n) == a(n) (mod 691) = A046694(n). - Benoit Cloitre, Aug 28 2002

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-11)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11)-1)/(p^11-1).
Sum_{k=1..n} a(k) = zeta(12) * n^12 / 12 + O(n^13). (End)

A121733 Numbers k such that tau(k) = tau(k+1) mod 691, where tau is Ramanujan's tau function A000594.

Original entry on oeis.org

184, 2103, 3421, 3638, 4342, 5181, 6029, 6233, 8323, 8628, 8721, 9658, 9905, 11322, 11774, 11888, 12410, 12774, 12811, 13063, 13484, 14744, 14906, 15065, 15247, 16581, 16610, 18248, 18396, 18703, 19514, 20476, 20479, 21657, 22089, 22984
Offset: 1

Views

Author

Alexander Adamchuk, Aug 18 2006

Keywords

Comments

Corresponding Ramanujan tau numbers mod 691 are listed in A121734(n) = A046694(a(n)). A121734 begins 483, 209, 21, 632, 650, 541, 546, 281, 666, 440, 397, 576, 18, 251, 356, 207, 532, 361, 121, 642, 288, 167, 348, 505, 561, 0, 108, 166, 97, 492, 58, 255, 632, 151, 679, 185, 141, 587, 0, ....
There are instances of three consecutive equal terms in A046694, with A046694(n) = A046694(n+1) = A046694(n+2). Equivalently there are consecutive equal terms a(n) = a(n+1). The first is A046694(290217) = A046694(290218) = A046694(290219) = 0. - Alexander Adamchuk, Aug 18 2006

Examples

			a(1) = 184 because the first pair of equal consecutive numbers in A046694 is A046694(184) = A046694(185) = 483 = A121734(1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000],Mod[DivisorSigma[11,#1],691]==Mod[DivisorSigma[11,#1+1],691]&]
  • PARI
    is(n)=(ramanujantau(n)-ramanujantau(n+1))%691==0 \\ Charles R Greathouse IV, Feb 08 2017

A121743 Values of the Ramanujan tau triples mod 691 such that three consecutive Ramanujan tau numbers are congruent mod 691.

Original entry on oeis.org

0, 276, 91, 79, 0, 0, 0, 0, 76, 349, 212, 355, 662, 227, 342, 616, 182, 641, 105, 0, 21, 33, 0, 0, 316, 436, 346, 109, 468, 557, 261, 512, 299, 532, 565, 214, 72, 218, 436, 0, 166, 532, 0, 591, 0, 144, 0, 544, 257, 0, 0, 0, 422, 0, 0, 488, 0, 0, 0, 488, 0, 233, 371, 0, 380, 28, 0, 641, 414, 331, 0, 487, 0, 666, 130, 14, 0, 0, 321, 620, 0, 339, 533
Offset: 1

Views

Author

Alexander Adamchuk, Aug 19 2006

Keywords

Comments

Corresponding indices of the Ramanujan tau triples mod 691 are listed in A121742. All a(n) belong to the Ramanujan tau twins mod 691 A121734(n). There are also quadruplets in the Ramanujan tau mod 691 such that A046694(n) = A046694(n+1) = A046694(n+2) = A046694(n+3). The first such Ramanujan tau quadruplet mod 691 starts with A046694(1409635) = 0.

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];h=Mod[DivisorSigma[11,n+2],691];If[f==g&&g==h,Print[{n,f}]],{n,1,1500000}]
    Select[Partition[Table[Mod[DivisorSigma[11,n],691],{n,10000000}],3,1],Length[ Union[#]]==1&][[All,1]] (* Harvey P. Dale, Jan 31 2020 *)

Formula

a(n) = A000594(A121742(n)) mod 691.
a(n) = A046694(A121742(n)).

Extensions

a(7)-a(16) from Amiram Eldar, Jan 26 2020
More terms by Jud McCranie Nov 02 2020

A134671 Primes of the form 2m*691 - 1.

Original entry on oeis.org

1381, 5527, 8291, 12437, 22111, 29021, 30403, 34549, 37313, 42841, 51133, 53897, 58043, 62189, 70481, 92593, 96739, 105031, 120233, 134053, 145109, 167221, 179659, 182423, 186569, 187951, 192097, 194861, 212827, 216973, 233557, 281927
Offset: 1

Views

Author

Alexander Adamchuk, Nov 05 2007

Keywords

Comments

Note that all zeros of A046694(n) have the indices equal to the terms of all arithmetic progressions of the type k*p, where primes p belong to a(n). Thus A046694(k*a(n)) = 0 for all integer k > 0.

Examples

			a(1) = 1381 = 2*691 - 1 is a first prime of the form 2m*691 - 1.
		

Crossrefs

Cf. A046694 = Ramanujan tau numbers mod 691 = sum of 11th power of divisors mod 691.
Cf. A121733 = Numbers n such that two consecutive Ramanujan tau numbers are congruent mod 691.
Cf. A121734 = Ramanujan tau numbers such that A000594[n] == A000594[n+1] mod 691.
Cf. A121742 = Numbers n such that three consecutive Ramanujan tau numbers are congruent mod 691.
Cf. A121743 = Values of the Ramanujan tau triples mod 691 such that three consecutive Ramanujan tau numbers are congruent mod 691.
Cf. A134670 = Least number k such that A046694 has a string of n consecutive zeros starting with A046694(k).

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 1382*n-1]; // Vincenzo Librandi, Nov 07 2014
    
  • Mathematica
    Select[ 2*691*Range[ 1000 ] - 1, PrimeQ[ # ] & ]
    Select[Table[1382 n - 1, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Nov 07 2014 *)
  • PARI
    list(lim)=my(v=List()); forprimestep(p=1381,lim,Mod(-1,1382), listput(v,p)); Vec(v) \\ Charles R Greathouse IV, Sep 09 2022

A262339 Exceptional primes for Ramanujan's tau function.

Original entry on oeis.org

2, 3, 5, 7, 23, 691
Offset: 1

Views

Author

Jonathan Sondow, Sep 18 2015

Keywords

Comments

For each exceptional prime p, Ramanujan's tau function tau(n) = A000594(n) satisfies a simple congruence modulo p.
The main entry for this subject is A000594.
Terms 23 and 691 also appear in A193855. - Jud McCranie, Nov 05 2020

Examples

			691 is an exceptional prime because tau(n) == sum of 11th power of divisors of n mod 691 (see A046694).
		

References

  • H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.

Crossrefs

Showing 1-10 of 11 results. Next