cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)

Examples

			Start of array:
  1,  2,  2,   3,   2,    4, ...
  1,  3,  4,   7,   6,   12, ...
  1,  5, 10,  21,  26,   50, ...
  1,  9, 28,  73, 126,  252, ...
  1, 17, 82, 273, 626, 1394, ...
  ...
The triangle T(m, k) with row offset 1 starts:
  m\k 0  1  2   3    4    5    6    7   8  9 ...
  1:  1
  2:  2  1
  3:  2  3  1
  4:  3  4  5   1
  5:  2  7 10   9    1
  6:  4  6 21  28   17    1
  7:  2 12 26  73   82   33    1
  8:  4  8 50 126  273  244   65    1
  9:  3 15 50 252  626 1057  730  129   1
  10: 4 13 85 344 1394 3126 4161 2188 257  1
  ... - _Wolfdieter Lang_, Jan 14 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

Crossrefs

Programs

  • Magma
    A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >;
    [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory):
    seq(seq(sigma[k](1+d-k), k=0..d), d=0..12);  # Alois P. Heinz, Feb 06 2013
  • Mathematica
    rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
  • SageMath
    def A109974(n,k): return sigma(n-k+1, k-1)
    flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006

A319649 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} j^k * floor(n/j).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 6, 8, 8, 1, 10, 16, 15, 10, 1, 18, 38, 37, 21, 14, 1, 34, 100, 111, 63, 33, 16, 1, 66, 278, 373, 237, 113, 41, 20, 1, 130, 796, 1335, 999, 489, 163, 56, 23, 1, 258, 2318, 4957, 4461, 2393, 833, 248, 69, 27, 1, 514, 6820, 18831, 20583, 12513, 4795, 1418, 339, 87, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
   8,  15,   37,  111,   373,   1335,  ...
  10,  21,   63,  237,   999,   4461,  ...
  14,  33,  113,  489,  2393,  12513,  ...
		

Crossrefs

Columns k=0..5 give A006218, A024916, A064602, A064603, A064604, A248076.
Cf. A082771, A109974, A319194 (diagonal).

Programs

  • Mathematica
    Table[Function[k, Sum[j^k Floor[n/j] , {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[DivisorSigma[k, j], {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A319649_T(n,k): return (((s:=isqrt(n))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)+1)-bernoulli(k+1)+bernoulli(k+1,q+1) for w in range(1,s+1)))//(k+1) + int(k==0)
    def A319649_gen(): # generator of terms
         return (A319649_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A319649_list = list(islice(A319649_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} j^k*x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} sigma_k(j).

A020514 a(n) = 1^n + 2^n + 4^n + 8^n + 16^n.

Original entry on oeis.org

5, 31, 341, 4681, 69905, 1082401, 17043521, 270549121, 4311810305, 68853957121, 1100586419201, 17600780175361, 281543712968705, 4504149450301441, 72061992352890881, 1152956690052710401, 18447025552981295105, 295150156996346511361, 4722384497336874434561
Offset: 0

Views

Author

Keywords

Comments

5th cyclotomic polynomial evaluated at 2^n.

Crossrefs

Programs

  • Maple
    with(numtheory,cyclotomic):seq(cyclotomic(5,2^i),i=0..24);
  • Mathematica
    With[{c=2^Range[0,4]},Table[Total[c^n],{n,0,20}]] (* Harvey P. Dale, May 27 2012 *)
  • PARI
    a(n)=1^n+2^n+4^n+8^n+16^n \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [sigma(16,n)for n in range(0,16)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: 1/(1-x)+1/(1-2*x)+1/(1-4*x)+1/(1-8*x)+1/(1-16*x). - Philippe Deléham, Apr 06 2013
E.g.f.: exp(x) + exp(2*x) + exp(4*x) + exp(8*x) + exp(16*x). - Philippe Deléham, Apr 06 2013
a(n) = 31*a(n-1) - 310*a(n-2) + 1240*a(n-3) - 1984*a(n-4) + 1024*a(n-5) with a(0) = 5, a(1) = 31, a(2) = 341, a(3) = 4681, a(4) = 69905. - Philippe Deléham, Apr 06 2013
a(n) = (2^(5*n) - 1)/( 2^n - 1). Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 31*x + 651*x^2 + 11811*x^3 + ... is the o.g.f. for the 4th subdiagonal of triangle A022166, essentially A006097. - Peter Bala, Apr 07 2015

A362870 a(n) = sigma_29(n), the sum of the 29th powers of the divisors of n.

Original entry on oeis.org

1, 536870913, 68630377364884, 288230376688582657, 186264514923095703126, 36845653355419807219092, 3219905755813179726837608, 154742505198902911050973185, 4710128697246313465298968573, 100000000186264514923632574038, 1586309297171491574414436704892
Offset: 1

Views

Author

Vaclav Kotesovec, May 07 2023

Keywords

Comments

In general, for k > 0, Sum_{n>=1} sigma_(4*k+1)(n) / exp(2*Pi*n) = Bernoulli(4*k+2)/(8*k+4). For k = 0, Sum_{n>=1} sigma(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = Bernoulli(2)/4 - 1/(8*Pi).
This formula can best be understood as a statement about the divided Bernoulli numbers b(n) = B(n) / n. Then you can say: If v is twice an odd number greater than 1 (i.e., v = 4*n + 2, a term of A016825 that is greater than 2), then b(v) = 2 * Sum_{j>=1} sigma_{v - 1}(j) / exp(2*Pi*j) = A358625(v) / A075180(v - 1). - Peter Luschny, May 08 2023

Crossrefs

Cf. A000203 (sigma_1), A001160 (sigma_5), A013957 (sigma_9), A013961 (sigma_13), A013965 (sigma_17), A013969 (sigma_21), A281959 (sigma_25).

Programs

  • Maple
    with(NumberTheory): seq(SumOfDivisors(k, 29), k = 1..20);
  • Mathematica
    DivisorSigma[29, Range[20]]
  • PARI
    for(n=1, 20, print1(direuler( p=2, n, 1 / (1 - X) /(1 - p^29*X))[n], ", "))
    
  • Python
    from sympy import divisor_sigma
    def A362870(n): return divisor_sigma(n,29) # Chai Wah Wu, May 07 2023

Formula

G.f.: Sum_{k>=1} k^29 * x^k / (1-x^k).
Dirichlet g.f.: zeta(s-29)*zeta(s).
Sum_{k=1..n} a(k) ~ zeta(30) * n^30 / 30.
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1723168255201/171864 = Bernoulli(30)/60.
Multiplicative with a(p^e) = (p^(29*e+29)-1)/(p^29-1). - Amiram Eldar, Oct 29 2023

A319278 Square array sigma_k(n) read down antidiagonals: sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 21, 6, 1, 33, 82, 73, 26, 12, 1, 65, 244, 273, 126, 50, 8, 1, 129, 730, 1057, 626, 252, 50, 15, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12
Offset: 1

Views

Author

R. J. Mathar, Sep 16 2018

Keywords

Comments

Equals the square array A082771 without its first column.

Examples

			The array starts in row n=1 with columns k>=1 as:
     1      1      1      1      1      1       1        1
     3      5      9     17     33     65     129      257
     4     10     28     82    244    730    2188     6562
     7     21     73    273   1057   4161   16513    65793
     6     26    126    626   3126  15626   78126   390626
    12     50    252   1394   8052  47450  282252  1686434
     8     50    344   2402  16808 117650  823544  5764802
    15     85    585   4369  33825 266305 2113665 16843009
		

Crossrefs

Cf. A082771, A023887 (diagonal), A109974, A319194 (partial column sums).

Programs

  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)

Formula

sigma_k(n) = sum_{d|n} d^k.
Showing 1-6 of 6 results.