A350106
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j * floor(n/j)^k.
Original entry on oeis.org
1, 1, 4, 1, 6, 8, 1, 10, 14, 15, 1, 18, 32, 31, 21, 1, 34, 86, 87, 45, 33, 1, 66, 248, 295, 153, 81, 41, 1, 130, 734, 1095, 669, 309, 101, 56, 1, 258, 2192, 4231, 3201, 1521, 443, 150, 69, 1, 514, 6566, 16647, 15765, 8373, 2633, 722, 191, 87, 1, 1026, 19688, 66055, 78393, 48321, 17411, 4746, 1005, 253, 99
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
4, 6, 10, 18, 34, 66, 130, ...
8, 14, 32, 86, 248, 734, 2192, ...
15, 31, 87, 295, 1095, 4231, 16647, ...
21, 45, 153, 669, 3201, 15765, 78393, ...
33, 81, 309, 1521, 8373, 48321, 284709, ...
41, 101, 443, 2633, 17411, 119321, 828323, ...
-
T[n_, k_] := Sum[j * Floor[n/j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 14 2021 *)
-
T(n, k) = sum(j=1, n, j*(n\j)^k);
-
T(n, k) = sum(j=1, n, j*sumdiv(j, d, (d^k-(d-1)^k)/d));
A356124
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j^k * binomial(floor(n/j)+1,2).
Original entry on oeis.org
1, 1, 4, 1, 5, 8, 1, 7, 11, 15, 1, 11, 19, 23, 21, 1, 19, 41, 47, 33, 33, 1, 35, 103, 125, 77, 57, 41, 1, 67, 281, 395, 255, 149, 71, 56, 1, 131, 799, 1373, 1025, 555, 205, 103, 69, 1, 259, 2321, 5027, 4503, 2537, 905, 325, 130, 87, 1, 515, 6823, 18965, 20657, 12867, 4945, 1585, 442, 170, 99
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
4, 5, 7, 11, 19, 35, 67, ...
8, 11, 19, 41, 103, 281, 799, ...
15, 23, 47, 125, 395, 1373, 5027, ...
21, 33, 77, 255, 1025, 4503, 20657, ...
33, 57, 149, 555, 2537, 12867, 68969, ...
-
T[n_, k_] := Sum[j^k * Binomial[Floor[n/j] + 1, 2], {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 28 2022 *)
-
T(n, k) = sum(j=1, n, j^k*binomial(n\j+1, 2));
-
T(n, k) = sum(j=1, n, j*sigma(j, k-1));
-
from itertools import count, islice
from math import isqrt
from sympy import bernoulli
def A356124_T(n,k): return ((s:=isqrt(n))*(s+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)*(q+1))+(w*(bernoulli(k+1,q+1)-bernoulli(k+1))<<1) for w in range(1,s+1)))//(k+1)>>1
def A356124_gen(): # generator of terms
return (A356124_T(k+1,n-k-1) for n in count(1) for k in range(n))
A356124_list = list(islice(A356124_gen(),30)) # Chai Wah Wu, Oct 24 2023
A308313
a(n) = Sum_{k=1..n} (-1)^(n-k) * k^n * floor(n/k).
Original entry on oeis.org
1, 2, 22, 203, 2285, 33855, 609345, 12420372, 284964519, 7347342215, 209807114169, 6554034238459, 222469737401739, 8159109186320903, 321461264348047819, 13538455640979049698, 606976994365011212414, 28864017965496692865925, 1451086990386146504580735, 76896033641977171208887465
Offset: 1
-
Table[Sum[(-1)^(n - k) k^n Floor[n/k] , {k, 1, n}], {n, 1, 20}]
Table[SeriesCoefficient[1/(1 + x) Sum[k^n x^k/(1 - (-x)^k), {k, 1, n}], {x, 0, n}], {n, 1, 20}]
Table[(-1)^n Sum[DivisorSigma[n, k] - 2 Total[Select[Divisors[k], OddQ]^n], {k, 1, n}], {n, 1, 20}]
-
a(n)={sum(k=1, n, (-1)^(n-k) * k^n * (n\k))} \\ Andrew Howroyd, Aug 22 2019
-
from math import isqrt
from sympy import bernoulli
def A308313(n): return (-1 if n&1 else 1)*((((s:=isqrt(m:=n>>1))+1)*(bernoulli(n+1)-bernoulli(n+1,s+1))<
A356130
a(n) = Sum_{k=1..n} sigma_{n-1}(k).
Original entry on oeis.org
1, 4, 16, 111, 999, 12513, 185683, 3316418, 67810767, 1576561677, 40862702931, 1171104916405, 36722498575799, 1251419967587955, 46034784688102781, 1818440444592581068, 76763036794222996512, 3448830049286378614987, 164309958491233496689189
Offset: 1
-
a[n_] := Sum[DivisorSigma[n-1, k], {k, 1, n}]; Array[a, 19] (* Amiram Eldar, Jul 28 2022 *)
-
a(n) = sum(k=1, n, sigma(k, n-1));
-
a(n) = sum(k=1, n, k^(n-1)*(n\k));
-
from math import isqrt
from sympy import bernoulli
def A350130(n): return (((s:=isqrt(n))+1)*((b:=bernoulli(n))-bernoulli(n, s+1))+sum(k**(n-1)*n*((q:=n//k)+1)-b+bernoulli(n, q+1) for k in range(1,s+1)))//n if n>1 else 1 # Chai Wah Wu, Oct 21 2023
A366919
a(n) = Sum_{k=1..n} (-1)^k*k^n*floor(n/k).
Original entry on oeis.org
-1, 2, -22, 203, -2285, 33855, -609345, 12420372, -284964519, 7347342215, -209807114169, 6554034238459, -222469737401739, 8159109186320903, -321461264348047819, 13538455640979049698, -606976994365011212414, 28864017965496692865925, -1451086990386146504580735
Offset: 1
-
a[n_]:=Sum[ (-1)^k*k^n*Floor[n/k],{k,n}]; Array[a,19] (* Stefano Spezia, Oct 29 2023 *)
-
a(n) = sum(k=1, n, (-1)^k*k^n*(n\k)); \\ Michel Marcus, Oct 29 2023
-
from math import isqrt
from sympy import bernoulli
def A366919(n): return ((((s:=isqrt(m:=n>>1))+1)*(bernoulli(n+1)-bernoulli(n+1,s+1))<
A366936
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^j*j^k*floor(n/j).
Original entry on oeis.org
-1, -1, -1, -1, 0, -3, -1, 2, -4, -2, -1, 6, -8, 1, -4, -1, 14, -22, 11, -5, -4, -1, 30, -68, 49, -15, -1, -6, -1, 62, -214, 203, -77, 15, -9, -4, -1, 126, -668, 841, -423, 119, -35, 4, -7, -1, 254, -2062, 3491, -2285, 807, -225, 48, -9, -7, -1, 510, -6308, 14449
Offset: 1
Array begins:
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ...
-1, 0, 2, 6, 14, 30, 62, 126, 254, 510, ...
-3, -4, -8, -22, -68, -214, -668, -2062, -6308, -19174, ...
-2, 1, 11, 49, 203, 841, 3491, 14449, 59483, 243481, ...
-4, -5, -15, -77, -423, -2285, -12135, -63677, -331143, -1709645, ...
-
from math import isqrt
from itertools import count, islice
from sympy import bernoulli
def A366936_T(n,k):
if k:
return ((((s:=isqrt(m:=n>>1))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))<>1))**2<<1)+((sum(m//k for k in range(1, t+1))<<1)-sum(n//k for k in range(1, s+1))<<1)
def A366936_gen(): return (A366936_T(k+1,n-k-1) for n in count(1) for k in range(n))
A366936_list = list(islice(A366936_gen(),30))
Showing 1-6 of 6 results.