cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350109 a(n) = Sum_{k=1..n} k * floor(n/k)^n.

Original entry on oeis.org

1, 6, 32, 295, 3201, 48321, 828323, 16910106, 388005909, 10019717653, 285409876785, 8920506515453, 302901435774351, 11113364096436947, 437903477186179875, 18447307498823123948, 827244767844150424228, 39346708569526147402819
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Crossrefs

Main diagonal of A350106.

Programs

  • Mathematica
    a[n_] := Sum[k * Floor[n/k]^n, {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Dec 14 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*(n\k)^n);
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, (d^n-(d-1)^n)/d));

Formula

a(n) = Sum_{k=1..n} k * Sum_{d|k} (d^n - (d - 1)^n)/d.
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} (k^n - (k - 1)^n) * x^k/(1 - x^k)^2.
a(n) ~ n^n. - Vaclav Kotesovec, Dec 16 2021

A350107 a(n) = Sum_{k=1..n} k * floor(n/k)^2.

Original entry on oeis.org

1, 6, 14, 31, 45, 81, 101, 150, 191, 253, 285, 401, 439, 527, 623, 752, 802, 979, 1035, 1233, 1369, 1509, 1577, 1901, 2020, 2186, 2362, 2642, 2728, 3136, 3228, 3549, 3765, 3983, 4215, 4772, 4882, 5126, 5382, 5932, 6054, 6630, 6758, 7202, 7664, 7960, 8100, 8936
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Crossrefs

Column 2 of A350106.

Programs

  • Mathematica
    a[n_] := Sum[k * Floor[n/k]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 14 2021 *)
    Accumulate[Table[2*k*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, 100}]] (* Vaclav Kotesovec, Dec 16 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*(n\k)^2);
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, (2*d-1)/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^k)^2)/(1-x))
    
  • PARI
    a(n) = sum(k=1, n, 2*k*numdiv(k)-sigma(k));
    
  • Python
    from math import isqrt
    def A350107(n): return -(s:=isqrt(n))**3*(s+1)+sum((q:=n//k)*((k<<1)*((q<<1)+1)-q-1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k * Sum_{d|k} (2*d - 1)/d = 2 * A143127(n) - A024916(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 - x^k)^2.
a(n) = Sum_{k=1..n} 2 * k * tau(k) - sigma(k).

A356124 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j^k * binomial(floor(n/j)+1,2).

Original entry on oeis.org

1, 1, 4, 1, 5, 8, 1, 7, 11, 15, 1, 11, 19, 23, 21, 1, 19, 41, 47, 33, 33, 1, 35, 103, 125, 77, 57, 41, 1, 67, 281, 395, 255, 149, 71, 56, 1, 131, 799, 1373, 1025, 555, 205, 103, 69, 1, 259, 2321, 5027, 4503, 2537, 905, 325, 130, 87, 1, 515, 6823, 18965, 20657, 12867, 4945, 1585, 442, 170, 99
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1,     1, ...
   4,  5,   7,  11,   19,    35,    67, ...
   8, 11,  19,  41,  103,   281,   799, ...
  15, 23,  47, 125,  395,  1373,  5027, ...
  21, 33,  77, 255, 1025,  4503, 20657, ...
  33, 57, 149, 555, 2537, 12867, 68969, ...
		

Crossrefs

Column k=0..4 give A024916, A143127, A143128, A356125, A356126.
T(n,n) gives A356129.
T(n,n+1) gives A356128.

Programs

  • Mathematica
    T[n_, k_] := Sum[j^k * Binomial[Floor[n/j] + 1, 2], {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    T(n, k) = sum(j=1, n, j^k*binomial(n\j+1, 2));
    
  • PARI
    T(n, k) = sum(j=1, n, j*sigma(j, k-1));
    
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A356124_T(n,k): return ((s:=isqrt(n))*(s+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)*(q+1))+(w*(bernoulli(k+1,q+1)-bernoulli(k+1))<<1) for w in range(1,s+1)))//(k+1)>>1
    def A356124_gen(): # generator of terms
         return (A356124_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A356124_list = list(islice(A356124_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} j^k * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * sigma_{k-1}(j).

A350108 a(n) = Sum_{k=1..n} k * floor(n/k)^3.

Original entry on oeis.org

1, 10, 32, 87, 153, 309, 443, 722, 1005, 1443, 1785, 2605, 3087, 3951, 4875, 6154, 6988, 8809, 9855, 12057, 13853, 16001, 17543, 21347, 23478, 26484, 29440, 33696, 36162, 41994, 44816, 50351, 54755, 59909, 64577, 73524, 77558, 84002, 90142, 100072, 105034
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Crossrefs

Column 3 of A350106.

Programs

  • Mathematica
    a[n_] := Sum[k * Floor[n/k]^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Dec 14 2021 *)
    Accumulate[Table[(1 + 3*k)*DivisorSigma[1, k] - 3*k*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 16 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*(n\k)^3);
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, (d^3-(d-1)^3)/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1-x^k)^2)/(1-x))
    
  • Python
    from math import isqrt
    def A350108(n): return -(s:=isqrt(n))**4*(s+1)+sum((q:=n//k)*(k**2*(3*(q+1))+k*(q*((q<<1)-3)-3)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 31 2023

Formula

a(n) = Sum_{k=1..n} k * Sum_{d|k} (d^3 - (d - 1)^3)/d.
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k/(1 - x^k)^2.
From Vaclav Kotesovec, Aug 03 2022: (Start)
a(n) = A024916(n) + 3*A143128(n) - 3*A143127(n).
a(n) ~ Pi^2*n^3/6 - 3*n^2*log(n)/2. (End)
Showing 1-4 of 4 results.