cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350123 a(n) = Sum_{k=1..n} k^2 * floor(n/k)^2.

Original entry on oeis.org

1, 8, 22, 57, 91, 185, 247, 402, 545, 775, 917, 1379, 1573, 1995, 2455, 3106, 3428, 4377, 4775, 5909, 6753, 7727, 8301, 10331, 11230, 12564, 13904, 15990, 16888, 19908, 20930, 23597, 25545, 27767, 29827, 34468, 35910, 38660, 41328, 46318, 48080, 53644, 55578
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[2*k*DivisorSigma[1, k] - DivisorSigma[2, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 16 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^2*(n\k)^2);
    
  • PARI
    a(n) = sum(k=1, n, k^2*sumdiv(k, d, (2*d-1)/d^2));
    
  • PARI
    a(n) = sum(k=1, n, 2*k*sigma(k)-sigma(k, 2));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k*(1+x^k)/(1-x^k)^3)/(1-x))
    
  • Python
    from math import isqrt
    def A350123(n): return (-(s:=isqrt(n))**3*(s+1)*((s<<1)+1)+sum((q:=n//k)*(6*k**2*q+((k<<1)-1)*(q+1)*((q<<1)+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^2 * Sum_{d|k} (2*d - 1)/d^2 = Sum_{k=1..n} 2 * k * sigma(k) - sigma_2(k) = 2 * A143128(n) - A064602(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k * (1 + x^k)/(1 - x^k)^3.
a(n) ~ n^3 * (Pi^2/9 - zeta(3)/3). - Vaclav Kotesovec, Dec 16 2021

A350106 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j * floor(n/j)^k.

Original entry on oeis.org

1, 1, 4, 1, 6, 8, 1, 10, 14, 15, 1, 18, 32, 31, 21, 1, 34, 86, 87, 45, 33, 1, 66, 248, 295, 153, 81, 41, 1, 130, 734, 1095, 669, 309, 101, 56, 1, 258, 2192, 4231, 3201, 1521, 443, 150, 69, 1, 514, 6566, 16647, 15765, 8373, 2633, 722, 191, 87, 1, 1026, 19688, 66055, 78393, 48321, 17411, 4746, 1005, 253, 99
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,     1,      1,      1, ...
   4,   6,  10,   18,    34,     66,    130, ...
   8,  14,  32,   86,   248,    734,   2192, ...
  15,  31,  87,  295,  1095,   4231,  16647, ...
  21,  45, 153,  669,  3201,  15765,  78393, ...
  33,  81, 309, 1521,  8373,  48321, 284709, ...
  41, 101, 443, 2633, 17411, 119321, 828323, ...
		

Crossrefs

Columns k=1..3 give A024916, A350107, A350108.
T(n,n) gives A350109.

Programs

  • Mathematica
    T[n_, k_] := Sum[j * Floor[n/j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 14 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, j*(n\j)^k);
    
  • PARI
    T(n, k) = sum(j=1, n, j*sumdiv(j, d, (d^k-(d-1)^k)/d));

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * Sum_{d|j} (d^k - (d - 1)^k)/d.

A350128 a(n) = Sum_{k=1..n} k^n * floor(n/k)^2.

Original entry on oeis.org

1, 8, 44, 417, 4545, 69905, 1207937, 24904806, 575256641, 14947281595, 427836523971, 13429362462839, 457637290140469, 16843379604615375, 665494379869134005, 28102480944522059434, 1262906802939553227382, 60182948301301262753877
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^n Floor[n/k]^2,{k,n}],{n,20}] (* Harvey P. Dale, Feb 11 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^n*(n\k)^2);
    
  • PARI
    a(n) = sum(k=1, n, 2*k*sigma(k, n-1)-sigma(k, n));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A350128(n): return (((s:=isqrt(n))+1)*(1-s)*(bernoulli(n+1,s+1)-(b:=bernoulli(n+1)))+sum(k**n*(n+1)*(((q:=n//k)+1)*(q-1))+(1-2*k)*(b-bernoulli(n+1,q+1)) for k in range(1,s+1)))//(n+1) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} 2 * k * sigma_{n-1}(k) - sigma_{n}(k).
a(n) ~ n^n / (1 - exp(-1)). - Vaclav Kotesovec, Dec 16 2021
Showing 1-3 of 3 results.