A350125
a(n) = Sum_{k=1..n} k^2 * floor(n/k)^n.
Original entry on oeis.org
1, 8, 40, 345, 3303, 50225, 833569, 17045934, 388654659, 10039636255, 285508661853, 8924967326015, 302927979357701, 11114722212099135, 437913155876193839, 18447871416712820782, 827249276230172525622, 39347009369000530723017
Offset: 1
-
a[n_] := Sum[k^2 * Floor[n/k]^n, {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Oct 04 2023 *)
-
a(n) = sum(k=1, n, k^2*(n\k)^n);
-
a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d^n-(d-1)^n)/d^2));
A350107
a(n) = Sum_{k=1..n} k * floor(n/k)^2.
Original entry on oeis.org
1, 6, 14, 31, 45, 81, 101, 150, 191, 253, 285, 401, 439, 527, 623, 752, 802, 979, 1035, 1233, 1369, 1509, 1577, 1901, 2020, 2186, 2362, 2642, 2728, 3136, 3228, 3549, 3765, 3983, 4215, 4772, 4882, 5126, 5382, 5932, 6054, 6630, 6758, 7202, 7664, 7960, 8100, 8936
Offset: 1
-
a[n_] := Sum[k * Floor[n/k]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 14 2021 *)
Accumulate[Table[2*k*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, 100}]] (* Vaclav Kotesovec, Dec 16 2021 *)
-
a(n) = sum(k=1, n, k*(n\k)^2);
-
a(n) = sum(k=1, n, k*sumdiv(k, d, (2*d-1)/d));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^k)^2)/(1-x))
-
a(n) = sum(k=1, n, 2*k*numdiv(k)-sigma(k));
-
from math import isqrt
def A350107(n): return -(s:=isqrt(n))**3*(s+1)+sum((q:=n//k)*((k<<1)*((q<<1)+1)-q-1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 24 2023
A350124
a(n) = Sum_{k=1..n} k^2 * floor(n/k)^3.
Original entry on oeis.org
1, 12, 40, 121, 207, 473, 649, 1142, 1611, 2401, 2853, 4647, 5285, 6879, 8759, 11452, 12558, 16739, 18127, 23353, 27129, 31171, 33219, 43573, 47524, 53210, 59538, 69996, 73274, 89694, 93446, 107195, 116731, 126545, 137505, 164580, 169946, 182244, 195644, 225454
Offset: 1
-
Accumulate[Table[DivisorSigma[2, k] - 3*k*DivisorSigma[1, k] + 3*k^2*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 17 2021 *)
-
a(n) = sum(k=1, n, k^2*(n\k)^3);
-
a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d^3-(d-1)^3)/d^2));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+x^k)/(1-x^k)^3)/(1-x))
-
from math import isqrt
def A350124(n): return (-(s:=isqrt(n))**4*(s+1)*(2*s+1) + sum((q:=n//k)*(k*(3*(k-1))+q*(k*(9*(k-1))+q*(k*(12*k-6)+2)+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023
A356249
a(n) = Sum_{k=1..n} (k * floor(n/k))^3.
Original entry on oeis.org
1, 16, 62, 219, 405, 1053, 1523, 2948, 4407, 7041, 8703, 15283, 17949, 24657, 32685, 44806, 50536, 70687, 78573, 105411, 125879, 149879, 163565, 222425, 247476, 286134, 327634, 396258, 423084, 532236, 564818, 664763, 738095, 821693, 904937, 1107618, 1162268, 1277588, 1395760
Offset: 1
-
a[n_] := Sum[(k * Floor[n/k])^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jul 31 2022 *)
-
a(n) = sum(k=1, n, (k*(n\k))^3);
-
a(n) = sum(k=1, n, k^3*sumdiv(k, d, 1-(1-1/d)^3));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4)/(1-x))
-
from math import isqrt
def A356249(n): return -(s:=isqrt(n))**5*(s+1)**2 + sum((q:=n//k)**2*(k*(3*(k-1))+q*(k*(k*(4*k+6)-6)+q*(k*(3*(k-1))+1)+2)+1) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 21 2023
A356250
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (j * floor(n/j))^k.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 22, 15, 5, 1, 32, 62, 57, 21, 6, 1, 64, 178, 219, 91, 33, 7, 1, 128, 518, 849, 405, 185, 41, 8, 1, 256, 1522, 3315, 1843, 1053, 247, 56, 9, 1, 512, 4502, 13017, 8541, 6065, 1523, 402, 69, 10, 1, 1024, 13378, 51339, 40171, 35253, 9571, 2948, 545, 87, 11
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, 64, 128, ...
3, 8, 22, 62, 178, 518, 1522, ...
4, 15, 57, 219, 849, 3315, 13017, ...
5, 21, 91, 405, 1843, 8541, 40171, ...
6, 33, 185, 1053, 6065, 35253, 206345, ...
7, 41, 247, 1523, 9571, 61091, 394987, ...
-
T[n_, k_] := Sum[(j * Floor[n/j])^k, {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 31 2022 *)
-
T(n, k) = sum(j=1, n, (j*(n\j))^k);
-
T(n, k) = if(k==0, n, sum(j=1, n, j^k*sumdiv(j, d, 1-(1-1/d)^k)));
Showing 1-5 of 5 results.