cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356250 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (j * floor(n/j))^k.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 22, 15, 5, 1, 32, 62, 57, 21, 6, 1, 64, 178, 219, 91, 33, 7, 1, 128, 518, 849, 405, 185, 41, 8, 1, 256, 1522, 3315, 1843, 1053, 247, 56, 9, 1, 512, 4502, 13017, 8541, 6065, 1523, 402, 69, 10, 1, 1024, 13378, 51339, 40171, 35253, 9571, 2948, 545, 87, 11
Offset: 1

Views

Author

Seiichi Manyama, Jul 31 2022

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,      1, ...
  2,  4,   8,   16,   32,    64,    128, ...
  3,  8,  22,   62,  178,   518,   1522, ...
  4, 15,  57,  219,  849,  3315,  13017, ...
  5, 21,  91,  405, 1843,  8541,  40171, ...
  6, 33, 185, 1053, 6065, 35253, 206345, ...
  7, 41, 247, 1523, 9571, 61091, 394987, ...
		

Crossrefs

Columns k=0..3 give A001477, A024916, A350123, A356249.
T(n,n) gives A356238.
Cf. A344725.

Programs

  • Mathematica
    T[n_, k_] := Sum[(j * Floor[n/j])^k, {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    T(n, k) = sum(j=1, n, (j*(n\j))^k);
    
  • PARI
    T(n, k) = if(k==0, n, sum(j=1, n, j^k*sumdiv(j, d, 1-(1-1/d)^k)));

Formula

T(n,k) = Sum_{j=1..n} j^k * Sum_{d|j} (1 - (1 - 1/d)^k) for k > 0.
Showing 1-1 of 1 results.