A350106 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j * floor(n/j)^k.
1, 1, 4, 1, 6, 8, 1, 10, 14, 15, 1, 18, 32, 31, 21, 1, 34, 86, 87, 45, 33, 1, 66, 248, 295, 153, 81, 41, 1, 130, 734, 1095, 669, 309, 101, 56, 1, 258, 2192, 4231, 3201, 1521, 443, 150, 69, 1, 514, 6566, 16647, 15765, 8373, 2633, 722, 191, 87, 1, 1026, 19688, 66055, 78393, 48321, 17411, 4746, 1005, 253, 99
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 4, 6, 10, 18, 34, 66, 130, ... 8, 14, 32, 86, 248, 734, 2192, ... 15, 31, 87, 295, 1095, 4231, 16647, ... 21, 45, 153, 669, 3201, 15765, 78393, ... 33, 81, 309, 1521, 8373, 48321, 284709, ... 41, 101, 443, 2633, 17411, 119321, 828323, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[j * Floor[n/j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 14 2021 *)
-
PARI
T(n, k) = sum(j=1, n, j*(n\j)^k);
-
PARI
T(n, k) = sum(j=1, n, j*sumdiv(j, d, (d^k-(d-1)^k)/d));
Formula
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * Sum_{d|j} (d^k - (d - 1)^k)/d.