cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

11, 23, 691, 5807
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Nik Lygeros and Olivier Rozier found a new solution to the equation tau(p) + 1 == 0 (mod p) for prime p = 692881373, on September 6 2009. - Seiichi Manyama, Dec 30 2017
a(5) > 8*10^7. - Seiichi Manyama, Jan 01 2018
A superset of A193855. - Jud McCranie, Nov 06 2020

Examples

			tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11.
tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23.
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691.
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020

A299163 a(n) = A000594(n) mod (n+1).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 0, 6, 7, 9, 0, 11, 0, 6, 8, 14, 0, 1, 0, 0, 2, 0, 0, 10, 15, 24, 0, 10, 0, 18, 0, 30, 12, 21, 12, 20, 30, 6, 24, 4, 0, 3, 16, 21, 0, 15, 0, 21, 43, 15, 20, 21, 0, 45, 0, 27, 42, 34, 0, 28, 46, 42, 56, 38, 48, 60, 16, 0, 14, 63, 0, 50, 60, 36, 12
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], n+1]; Array[a, 100] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    {a(n) = ramanujantau(n)%(n+1)}

A299204 a(n) = A000594(n) mod (n-1).

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 4, 5, 0, 2, 9, 2, 0, 0, 1, 2, 3, 2, 2, 12, 18, 10, 22, 7, 12, 22, 2, 2, 5, 2, 11, 16, 15, 2, 31, 2, 12, 32, 3, 2, 8, 2, 27, 42, 27, 22, 9, 9, 16, 32, 32, 10, 33, 18, 0, 0, 30, 0, 29, 2, 38, 50, 28, 20, 39, 26, 48, 48, 0, 2, 4, 2, 5, 26, 35, 12
Offset: 2

Views

Author

Seiichi Manyama, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[RamanujanTau@n, n - 1]; Array[f, 76, 2] (* Robert G. Wilson v, Feb 07 2018 *)
  • PARI
    {a(n) = ramanujantau(n)%(n-1)}

A273651 a(n) = A000594(p) mod p, where p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 10, 7, 1, 24, 21, 31, 30, 31, 27, 29, 14, 49, 64, 19, 67, 37, 20, 56, 20, 74, 50, 34, 73, 29, 109, 64, 4, 137, 66, 32, 154, 64, 106, 51, 119, 97, 95, 110, 63, 102, 169, 28, 166
Offset: 1

Views

Author

Seiichi Manyama, May 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[RamanujanTau@ #, #] & /@ Prime@ Range@ 80 (* Michael De Vlieger, May 27 2016 *)
  • PARI
    a(n,p=prime(n))=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756%p \\ Charles R Greathouse IV, Jun 07 2016
    
  • Python
    from sympy import prime, divisor_sigma
    def A273651(n):
        p = prime(n)
        return -1680*sum(pow(i,4,p)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1,p+1>>1)) % p # Chai Wah Wu, Nov 08 2022
  • Ruby
    require 'prime'
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      s10 = [s1 - 1, m].min
      (0..s10).each{|i|
        s20 = [s2 - 1, m - i].min
        (0..s20).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary
    end
    def power(ary, n, m)
      return [1] if n == 0
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A000594(n)
      ary = Array.new(n + 1, 0)
      i = 0
      j, k = 2 * i + 1, i * (i + 1) / 2
      while k <= n
        i & 1 == 1? ary[k] = -j : ary[k] = j
        i += 1
        j, k = 2 * i + 1, i * (i + 1) / 2
      end
      power(ary, 8, n).unshift(0)[1..n]
    end
    def A273651(n)
      p_ary = Prime.each.take(n)
      t_ary = A000594(p_ary[-1])
      p_ary.inject([]){|s, i| s << t_ary[i - 1] % i}
    end
    p A273651(n)
    

Formula

for n > 1, a(n) = -1680*Sum_{i=1..(p-1)/2} i**4*sigma(i)*sigma(p-i) mod p where p = prime(n). - Chai Wah Wu, Nov 08 2022

A295654 Numbers k such that tau(k) +- 1 is congruent to 0 (mod k), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

1, 11, 23, 691, 5807, 85583, 189751, 37264081
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Compare with A063938.
a(9) > 8*10^7. - Seiichi Manyama, Jan 01 2018

Examples

			tau(11) = 534612 and 11 | (534612 - 1).
tau(23) = 18643272 and 23 | (18643272 - 1).
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1).
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1).
tau(85583) = 90954516543892718450139576 and 85583 | (90954516543892718450139576 - 1).
tau(189751) = 4685230754227867924094547904 and 189751 | (4685230754227867924094547904 + 1).
tau(37264081) = 831105005803795341334403814220760726696052 and 37264081 | (831105005803795341334403814220760726696052 - 1).
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{t = RamanujanTau@n}, Mod[t, n] == 1 || Mod[t, n] + 1 == n]; (* Robert G. Wilson v, Nov 25 2017 *)
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A295654_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n==1 or abs(-840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n)==1, count(max(startvalue,1)))
    A295654_list = list(islice(A295654_gen(),4)) # Chai Wah Wu, Nov 08 2022

Formula

A273650(a(n)) is 1 or n - 1.

Extensions

a(8) from Seiichi Manyama, Jan 01 2018

A296580 Odd primes p such that tau(p) is congruent to (p-1)/2 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

191, 5399, 1259393
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2017

Keywords

Comments

a(4) > 10^7.
There is no odd prime p (< 10^7) such that tau(p) is congruent to (p+1)/2 (mod p).

Examples

			tau(191) = 2762403350592 and 2762403350592 == 95 mod 191, so a(1) = 191.
tau(5399) = -616400667743946780600 and -616400667743946780600 == 2699 mod 5399, so a(2) = 5399.
tau(1259393) = -600367974333827988240021654527358 and -600367974333827988240021654527358 == 629696 mod 1259393, so a(3) = 1259393.
		

Crossrefs

Showing 1-6 of 6 results.