A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).
11, 23, 691, 5807
Offset: 1
Examples
tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11. tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23. tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691. tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
Links
- N. Lygeros and O. Rozier, A new solution to the equation tau(p) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.
- Eric Weisstein's World of Mathematics, Tau Function.
- Wikipedia, Ramanujan tau function.
Programs
-
Mathematica
Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
-
PARI
isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020
Comments