cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A299157 Numbers k such that k+1 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 17, 19, 20, 22, 23, 27, 29, 31, 41, 45, 47, 53, 55, 59, 68, 71, 76, 77, 79, 83, 87, 89, 91, 97, 104, 107, 114, 127, 137, 139, 149, 160, 167, 171, 177, 179, 183, 191, 195, 199, 209, 223, 229, 239, 240, 243, 251, 269, 275, 293, 297, 321, 343
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

Numbers k such that A299163(k) = 0.

Crossrefs

Programs

  • Mathematica
    q[k_] := Divisible[RamanujanTau[k], k+1]; Select[Range[350], q] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    isok(n) = (ramanujantau(n) % (n+1)) == 0; \\ Michel Marcus, Feb 05 2018

A299171 Primes p such that Ramanujan number tau(p) is divisible by p+1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 97, 107, 127, 137, 139, 149, 167, 179, 191, 199, 223, 229, 239, 251, 269, 293, 349, 359, 367, 383, 419, 431, 449, 479, 499, 503, 587, 593, 599, 643, 647, 719, 809, 827, 839, 863, 881, 919
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[#] && Divisible[RamanujanTau[#], #+1] &] (* Amiram Eldar, Apr 14 2021 *)
  • PARI
    isok(p) = isprime(p) && !(ramanujantau(p) % (p+1)); \\ Michel Marcus, Feb 05 2018

A299204 a(n) = A000594(n) mod (n-1).

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 4, 5, 0, 2, 9, 2, 0, 0, 1, 2, 3, 2, 2, 12, 18, 10, 22, 7, 12, 22, 2, 2, 5, 2, 11, 16, 15, 2, 31, 2, 12, 32, 3, 2, 8, 2, 27, 42, 27, 22, 9, 9, 16, 32, 32, 10, 33, 18, 0, 0, 30, 0, 29, 2, 38, 50, 28, 20, 39, 26, 48, 48, 0, 2, 4, 2, 5, 26, 35, 12
Offset: 2

Views

Author

Seiichi Manyama, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[RamanujanTau@n, n - 1]; Array[f, 76, 2] (* Robert G. Wilson v, Feb 07 2018 *)
  • PARI
    {a(n) = ramanujantau(n)%(n-1)}

A299165 a(n) = A000594(n) mod n*(n+1).

Original entry on oeis.org

1, 0, 0, 8, 0, 0, 0, 24, 27, 20, 12, 24, 112, 126, 120, 48, 180, 324, 140, 0, 420, 460, 24, 360, 275, 510, 0, 532, 720, 390, 672, 96, 318, 406, 840, 612, 68, 630, 144, 1480, 1260, 1680, 676, 156, 0, 344, 1296, 1344, 343, 1800, 72, 392, 1566, 540, 2520, 1680
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], n*(n+1)]; Array[a, 100] (* Amiram Eldar, Jan 10 2025 *)
  • PARI
    {a(n) = ramanujantau(n)%(n*(n+1))}
Showing 1-4 of 4 results.