A299172
Primes p such that Ramanujan number tau(p) is divisible by p-1.
Original entry on oeis.org
-
Select[ Prime@ Range@ 30, Mod[ RamanujanTau@#, # - 1] == 0 &] (* Robert G. Wilson v, Feb 11 2018 *)
-
isok(p) = isprime(p) && !(ramanujantau(p) % (p-1)); \\ Michel Marcus, Feb 05 2018
A373464
Largest of a quadruple of primes p[1..4] such that (p[k]+1, k=1..4) is in geometric progression.
Original entry on oeis.org
23, 47, 107, 191, 499, 647, 719, 809, 863, 1249, 1439, 1999, 2591, 2879, 3023, 3779, 4079, 5323, 6911, 7039, 7127, 7559, 8231, 8231, 8747, 9839, 10289, 10289, 10499, 10499, 10529, 10691, 11279, 11519, 12959, 13229, 13309, 13999, 15551, 15551, 15971, 18143, 19207
Offset: 1
The terms of the sequence are column "p[4]" in the following table which lists the sequences of primes, and ratios of the geometric progression (p[k]+1):
n | p[1], p[2], p[3], p[4] | r = (p[k+1]+1) / (p[k]+1)
------+-------------------------+---------------------------
1 | 2, 5, 11, 23 | 2 = 6/3 = 12/6 = 24/12
2 | 5, 11, 23, 47 | 2 = 12/6 = 24/12 = 48/24
3 | 31, 47, 71, 107 | 3/2 = 48/32 = 72/48 = 108/72
4 | 2, 11, 47, 191 | 4 = 12/3 = 48/12 = 192/48
5 | 31, 79, 199, 499 | 5/2 = 80/32 = 200/80 = 500/200
6 | 2, 17, 107, 647 | 6 = 18/3 = 108/18 = 648/108
7 | 89, 179, 359, 719 | 2 = 180/90 = ...
8 | 29, 89, 269, 809 | 3 = 90/30 = ...
9 | 499, 599, 719, 863 | 6/5 = 600/500 = ...
10 | 79, 199, 499, 1249 | 5/2 = 200/80 = ...
11 | 179, 359, 719, 1439 | 2 = 360/180 = ...
12 | 53, 179, 599, 1999 | 10/3 = 180/54 = ...
Subsequence of
A089199 (primes p such that p+1 is divisible by a cube).
-
A373464_upto(N, show=0, D = 1, LIM=N\2) = { my(L=List()); forprime(p=1, LIM, my(denom = p+D); for(numer=denom+1, sqrtnint((N+D) * denom^2, 3), my(r=numer/denom); for(k=1,3, (type(denom * r^k)=="t_INT" && isprime(denom * r^k - D)) || next(2)); listput(L, denom * r^3 - D); show && printf(" | %4d, %4d, %4d, %4d | %s\n",denom-D, denom*r-D, denom*r^2-D, denom*r^3-D, numer/denom))); vecsort(L)}
-
from itertools import islice
from fractions import Fraction
from sympy import nextprime
def A373464_gen(): # generator of terms
p, plist, pset = 1, [], set()
while True:
p = nextprime(p)
for q in plist:
r = Fraction(q+1,p+1)
q2 = r*(q+1)-1
if q2 < 2:
break
if q2.denominator == 1:
q2 = int(q2)
if q2 in pset:
q3 = r*(q2+1)-1
if q3 < 2:
break
if q3.denominator == 1 and int(q3) in pset:
yield p
plist = [p]+plist
pset.add(p)
A373464_list = list(islice(A373464_gen(),20)) # Chai Wah Wu, Jul 16 2024
Showing 1-2 of 2 results.
Comments