cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273650 a(n) = A000594(n) mod n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 0, 0, 0, 10, 0, 7, 0, 0, 20, 1, 0, 0, 16, 0, 0, 24, 0, 21, 0, 21, 32, 0, 0, 31, 22, 27, 0, 30, 0, 31, 24, 0, 22, 27, 0, 0, 0, 21, 28, 29, 0, 45, 0, 54, 4, 14, 0, 49, 54, 0, 0, 30, 24, 64, 36, 45, 0, 19, 0, 67, 70, 0, 32, 42, 54, 37, 0, 0, 18
Offset: 1

Views

Author

Seiichi Manyama, May 27 2016

Keywords

Examples

			tau(10) mod 10 = (-115920) mod 10 = 0,
tau(11) mod 11 = 534612 mod 11 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], n]; Array[a, 100] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    a(n)=ramanujantau(n)%n \\ assumes the GRH; Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A273650(n): return -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n # Chai Wah Wu, Nov 08 2022

Formula

a(n) = A000594(n) mod n.
From Amiram Eldar, Jan 08 2025: (Start)
a(A063938(n)) = 0.
abs(a(A295654(n))) = 1. (End)

A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

11, 23, 691, 5807
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Nik Lygeros and Olivier Rozier found a new solution to the equation tau(p) + 1 == 0 (mod p) for prime p = 692881373, on September 6 2009. - Seiichi Manyama, Dec 30 2017
a(5) > 8*10^7. - Seiichi Manyama, Jan 01 2018
A superset of A193855. - Jud McCranie, Nov 06 2020

Examples

			tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11.
tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23.
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691.
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020
Showing 1-2 of 2 results.