cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A079334 Numbers k such that k divides tau(k) and k+1 divides tau(k+1), where tau(k)=A000594(k) is Ramanujan's tau function; i.e., k and k+1 are in A063938.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 90, 91, 125, 160, 161, 224, 440, 728, 735, 2024, 2400, 2744, 4095, 4374, 12879, 13824, 20735, 30624
Offset: 1

Views

Author

Dean Hickerson, Jan 03 2003

Keywords

Comments

No other terms < 212000. - Robert G. Wilson v, Jan 06 2002
No other terms < 30000000. - Dana Jacobsen, Sep 06 2015

Crossrefs

Programs

  • Mathematica
    (* First do <
    				
  • PARI
    tauvec(N) = Vec(q*eta(q + O(q^N))^24)
    v=tauvec(10000); for(n=1,#v-1,if(Mod(v[n],n) == 0 && Mod(v[n+1],n+1) == 0,print1(n", "))) \\ Dana Jacobsen, Sep 06 2015
    
  • Perl
    use ntheory ":all"; my @p = grep { !(ramanujan_tau($) % $) } 1..10000; for (0 .. $#p-1) { say $p[$] if $p[$]+1 == $p[$+1] } # _Dana Jacobsen, Sep 06 2015

A079333 Duplicate of A063938.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40
Offset: 1

Views

Author

Keywords

A002473 7-smooth numbers: positive numbers whose prime divisors are all <= 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 162, 168, 175, 180, 189, 192
Offset: 1

Views

Author

Keywords

Comments

Also called humble numbers; sometimes also called highly composite numbers, but this usually refers to A002182.
Successive numbers k such that phi(210k) = 48k. - Artur Jasinski, Nov 05 2008
The divisors of 10! (A161466) are a finite subsequence. - Reinhard Zumkeller, Jun 10 2009
Numbers n such that A198487(n) > 0 and A107698(n) > 0. - Jaroslav Krizek, Nov 04 2011
A262401(a(n)) = a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers which are products of single-digit numbers. - N. J. A. Sloane, Jul 02 2017
Phi(a(n)) is 7-smooth. In fact, the Euler Phi function applied to p-smooth numbers, for any prime p, is p-smooth. - Richard Locke Peterson, May 09 2020
Also those integers k, such that, for every prime p > 5, p^(12k) - 1 == 0 (mod 5040k). - Federico Provvedi, Jun 06 2022
The nonprimes with this property are all terms except for 2, 3, 5 and 7, i.e.: (1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, ...); the composite terms are all but the first one of this subsequence. ["Trivial" data provided mainly for search purpose.] - M. F. Hasler, Jun 06 2023

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 52.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A080672, complement of A068191. Subsequences: A003591, A003594, A003595, A195238, A059405.
Not the same as A063938. For p-smooth numbers with other values of p, see A003586, A051037, A051038, A080197, A080681, A080682, A080683.
Cf. A002182, A067374, A210679, A238985 (zeroless terms), A006530.
Cf. A262401.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a002473 n = a002473_list !! (n-1)
    a002473_list = f $ singleton 1 where
       f s = x : f (s' `union` fromList (map (* x) [2,3,5,7]))
             where (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Mar 08 2014, Apr 02 2012, Apr 01 2012
    
  • Magma
    [n: n in [1..200] | PrimeDivisors(n) subset PrimesUpTo(7)]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    Select[Range[250], Max[Transpose[FactorInteger[ # ]][[1]]]<=7&]
    aa = {}; Do[If[EulerPhi[210 n] == 48 n, AppendTo[aa, n]], {n, 1, 1200}]; aa (* Artur Jasinski, Nov 05 2008 *)
    mxExp = 8; Select[Union[Times @@@ Flatten[Table[Tuples[{2, 3, 5, 7}, n], {n, mxExp}], 1]], # <= 2^mxExp &] (* Harvey P. Dale, Aug 13 2012 *)
    mx = 200; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    test(n)=m=n; forprime(p=2,7, while(m%p==0,m=m/p)); return(m==1)
    for(n=1,200,if(test(n),print1(n",")))
    
  • PARI
    is_A002473(n)=n<11||vecmax(factor(n,8)[,1])<8 \\ M. F. Hasler, Jan 16 2015
    
  • PARI
    list(lim)=my(v=List(),t); for(a=0,logint(lim\1,7), for(b=0,logint(lim\7^a,5), for(c=0,logint(lim\7^a\5^b,3), t=3^c*5^b*7^a; while(t<=lim, listput(v,t); t<<=1)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def A002473gen(p=7): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A002473gen(), 65))) # Michael S. Branicky, Nov 19 2022
    
  • Python
    from sympy import integer_log
    def A002473(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                i7 = 7**i
                m = x//i7
                for j in range(integer_log(m,5)[0]+1):
                    j5 = 5**j
                    r = m//j5
                    for k in range(integer_log(r,3)[0]+1):
                        c -= (r//3**k).bit_length()
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

A006530(a(n)) <= 7. - Reinhard Zumkeller, Apr 01 2012
Sum_{n>=1} 1/a(n) = Product_{primes p <= 7} p/(p-1) = (2*3*5*7)/(1*2*4*6) = 35/8. - Amiram Eldar, Sep 22 2020

Extensions

More terms from James Sellers, Dec 23 1999
Additional comments from Michel Lecomte, Jun 09 2007
Edited by M. F. Hasler, Jan 16 2015

A007659 Primes p such that Ramanujan number tau(p) is divisible by p.

Original entry on oeis.org

2, 3, 5, 7, 2411, 7758337633
Offset: 1

Views

Author

Keywords

Comments

Primes at which cusp form Delta_12 (see A007332) is not ordinary.
a(5) was found by Newman (1972). - Amiram Eldar, Jan 06 2025

References

  • Morris Newman, A table of tau(p) modulo p, p prime, 3 <= p <= 16067, National Bureau of Standards, 1972.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 275.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000594, A007332. A proper subset of A063938.

Programs

  • Mathematica
    Select[ Prime[ Range[ 5133]], Mod[ RamanujanTau[ # ], # ] == 0 &] (* Dean Hickerson, Jan 03 2003 *)
    Select[Prime[Range[400]],Divisible[RamanujanTau[#],#]&] (* The program generates the first 5 terms of the sequence. *) (* Harvey P. Dale, Jun 06 2022 *)

Extensions

a(6) = 7758337633 from N. Lygeros and O. Rozier, Mar 16 2010. - N. J. A. Sloane, Mar 16 2010
Edited by Max Alekseyev, Jul 11 2010

A273650 a(n) = A000594(n) mod n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 0, 0, 0, 10, 0, 7, 0, 0, 20, 1, 0, 0, 16, 0, 0, 24, 0, 21, 0, 21, 32, 0, 0, 31, 22, 27, 0, 30, 0, 31, 24, 0, 22, 27, 0, 0, 0, 21, 28, 29, 0, 45, 0, 54, 4, 14, 0, 49, 54, 0, 0, 30, 24, 64, 36, 45, 0, 19, 0, 67, 70, 0, 32, 42, 54, 37, 0, 0, 18
Offset: 1

Views

Author

Seiichi Manyama, May 27 2016

Keywords

Examples

			tau(10) mod 10 = (-115920) mod 10 = 0,
tau(11) mod 11 = 534612 mod 11 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], n]; Array[a, 100] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    a(n)=ramanujantau(n)%n \\ assumes the GRH; Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A273650(n): return -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n # Chai Wah Wu, Nov 08 2022

Formula

a(n) = A000594(n) mod n.
From Amiram Eldar, Jan 08 2025: (Start)
a(A063938(n)) = 0.
abs(a(A295654(n))) = 1. (End)

A296991 Numbers k such that k^2 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 21, 24, 27, 32, 36, 40, 42, 48, 54, 64, 72, 81, 84, 96, 108, 120, 128, 135, 144, 162, 168, 189, 192, 216, 243, 256, 270, 280, 288, 324, 336, 360, 378, 384, 432, 448, 486, 512, 540, 576, 640, 648, 672, 729, 756, 768, 828, 840, 864
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Comments

2^k is a term for k >= 0.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[RamanujanTau@n, n^2] == 0; Select[Range@875, fQ] (* Robert G. Wilson v, Dec 23 2017 *)
  • PARI
    is(n) = Mod(ramanujantau(n), n^2)==0 \\ Felix Fröhlich, Dec 24 2017
    
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A296991_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else m*(35*m - 52*n)*divisor_sigma(m)**2)+sum(i**3*(70*i - 140*n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**2, count(max(startvalue,1)))
    A296991_list = list(islice(A296991_gen(),20)) # Chai Wah Wu, Nov 08 2022

A296992 Largest number m such that n^m divides tau(n), where tau(n) = A000594(n) is Ramanujan's tau function.

Original entry on oeis.org

3, 2, 3, 1, 3, 1, 3, 2, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 0, 0, 3, 1, 0, 2, 1, 0, 1, 0, 3, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0
Offset: 2

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Examples

			tau(2) =   -24 and 2^3 divides   24, so a(2) = 3.
tau(3) =   252 and 3^2 divides  252, so a(3) = 2.
tau(4) = -1472 and 4^3 divides 1472, so a(4) = 3.
		

Crossrefs

Cf. A063938 (a(n)>=1), A296991 (a(n)>=2), A296993 (a(n)>=3).
Cf. A191599 (a(n)=0), A297000 (a(n)=1), A297001 (a(n)=2).

Programs

  • Mathematica
    f[n_] := Block[{m = 0}, While[Mod[RamanujanTau@n, n^m] == 0, m++]; m - 1]; Array[f, 93, 2] (* Robert G. Wilson v, Dec 23 2017 *)
    a[n_] := IntegerExponent[RamanujanTau[n], n]; Array[a, 100, 2] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    a(n) = valuation(ramanujantau(n), n); \\ Amiram Eldar, Jan 09 2025

A299157 Numbers k such that k+1 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 17, 19, 20, 22, 23, 27, 29, 31, 41, 45, 47, 53, 55, 59, 68, 71, 76, 77, 79, 83, 87, 89, 91, 97, 104, 107, 114, 127, 137, 139, 149, 160, 167, 171, 177, 179, 183, 191, 195, 199, 209, 223, 229, 239, 240, 243, 251, 269, 275, 293, 297, 321, 343
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

Numbers k such that A299163(k) = 0.

Crossrefs

Programs

  • Mathematica
    q[k_] := Divisible[RamanujanTau[k], k+1]; Select[Range[350], q] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    isok(n) = (ramanujantau(n) % (n+1)) == 0; \\ Michel Marcus, Feb 05 2018

A296993 Numbers k such that k^3 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 24, 32, 64, 96, 128, 256, 288, 384, 512, 1024, 1536, 2048, 4096, 6144, 8192, 16384, 18432, 24576, 32768, 65536, 98304, 131072, 172032, 262144, 276480, 393216, 524288, 1048576, 1179648, 1572864, 1935360, 2097152, 2621440, 3538944, 4194304
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Comments

2^k is a term for k >= 0.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A296993_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2)))*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**3, count(max(startvalue,1)))
    A296993_list = list(islice(A296993_gen(),10)) # Chai Wah Wu, Nov 08 2022

A297000 Numbers k such that A296992(k) = 1.

Original entry on oeis.org

5, 7, 10, 14, 15, 20, 25, 28, 30, 35, 45, 49, 50, 56, 60, 63, 70, 75, 80, 88, 90, 91, 92, 98, 100, 105, 112, 115, 125, 126, 140, 147, 150, 160, 161, 175, 180, 182, 196, 200, 207, 210, 224, 225, 230, 240, 245, 250, 252, 264, 273, 276, 294, 300, 315, 320, 322, 343
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    1 + Position[Table[-1 + SelectFirst[Range[0, 5], ! Divisible[RamanujanTau@ n, n^#] &], {n, 2, 350}], 1][[All, 1]] (* Michael De Vlieger, Dec 23 2017 *)
  • PARI
    isok(k) = if(k == 1, 0, valuation(ramanujantau(k), k) == 1); \\ Amiram Eldar, Jan 09 2025
Showing 1-10 of 16 results. Next