cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A037948 Duplicate of A007659.

Original entry on oeis.org

2, 3, 5, 7, 2411
Offset: 1

Views

Author

Keywords

A063938 Numbers k that divide tau(k), where tau(k)=A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 88, 90, 91, 92, 96, 98, 100, 105, 108, 112, 115, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 161, 162, 168
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2001

Keywords

Comments

Although most small numbers are in the sequence, it becomes sparser for larger values; e.g., only 504 numbers up to 10000 and only 184 numbers from 10001 to 20000 are in the sequence.

Crossrefs

For the sequence when n is prime see A007659.

Programs

  • Mathematica
    (* First do <Michael De Vlieger, Dec 23 2017 *)
  • PARI
    for (n=1,1000,if(Mod(ramanujantau(n),n)==0,print1(n", "))) \\ Dana Jacobsen, Sep 06 2015
    
  • Perl
    use ntheory ":all"; my @p = grep { !(ramanujan_tau($) % $) } 1..1000; say "@p"; # Dana Jacobsen, Sep 06 2015
    
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A063938_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n, count(max(startvalue,1)))
    A063938_list = list(islice(A063938_gen(),25)) # Chai Wah Wu, Nov 08 2022

Extensions

More terms from Dean Hickerson, Jan 03 2003

A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

11, 23, 691, 5807
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Nik Lygeros and Olivier Rozier found a new solution to the equation tau(p) + 1 == 0 (mod p) for prime p = 692881373, on September 6 2009. - Seiichi Manyama, Dec 30 2017
a(5) > 8*10^7. - Seiichi Manyama, Jan 01 2018
A superset of A193855. - Jud McCranie, Nov 06 2020

Examples

			tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11.
tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23.
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691.
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020

A299171 Primes p such that Ramanujan number tau(p) is divisible by p+1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 97, 107, 127, 137, 139, 149, 167, 179, 191, 199, 223, 229, 239, 251, 269, 293, 349, 359, 367, 383, 419, 431, 449, 479, 499, 503, 587, 593, 599, 643, 647, 719, 809, 827, 839, 863, 881, 919
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[#] && Divisible[RamanujanTau[#], #+1] &] (* Amiram Eldar, Apr 14 2021 *)
  • PARI
    isok(p) = isprime(p) && !(ramanujantau(p) % (p+1)); \\ Michel Marcus, Feb 05 2018

A299172 Primes p such that Ramanujan number tau(p) is divisible by p-1.

Original entry on oeis.org

2, 3, 59, 107
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

a(5) > 10^7.

Crossrefs

Programs

  • Mathematica
    Select[ Prime@ Range@ 30, Mod[ RamanujanTau@#, # - 1] == 0 &] (* Robert G. Wilson v, Feb 11 2018 *)
  • PARI
    isok(p) = isprime(p) && !(ramanujantau(p) % (p-1)); \\ Michel Marcus, Feb 05 2018

A063940 Composite numbers k such that Ramanujan's function tau(k) (A000594) is not divisible by k.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 116, 117, 118, 119, 121, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 143, 145, 146, 148, 152, 153
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2001

Keywords

Examples

			22 is a term because Ramanujan's tau(22) = 18643272 and 18643272 mod 22 = 10.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 70 ], Mod[ CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 70} ] ], 70 ], x ][ [ # ] ], # ] != 0 && ! PrimeQ[ # ] & ]
    (* First do *) <Dean Hickerson, Jan 03 2003 *)

A135430 Numbers k for which Ramanujan's function tau(k)=A000594(k) is an odd prime.

Original entry on oeis.org

63001, 458329, 942841, 966289, 1510441, 2961841, 4879681, 14280841, 29019769, 46117681, 49182169, 51652969, 56957209, 75047569, 80120401, 86136961, 93644329, 97752769, 104509729, 162384049, 164378041, 177235969, 193571569
Offset: 1

Views

Author

Giovanni Resta, Dec 12 2007

Keywords

Comments

Here, negative integers whose absolute value is prime are considered prime.
a(1) = 63001 was found by Lehmer in 1965. It is known that tau(n) is odd if and only if n is an odd square. Indeed, a(1)=251^2, a(2)=677^2, ..., a(7)=47^4. The first sixth power in the sequence is 1151^6.
From Olivier Rozier, Feb 03 2016 (Start)
a(n) = p^(q-1) for p,q odd primes, and p not included in A007659, so that a(n) is a subsequence of A036454. Consequence of the arithmetical properties: (i) tau function is multiplicative, (ii) for p prime, tau(p^(k-1)) is the k-th term of a Lucas sequence.
It is conjectured that the equation |tau(n)|=2 has no solution. (End)

Examples

			tau(63001) = -80561663527802406257321747 which is prime.
		

Crossrefs

Cf. A000594 (Ramanujan's tau function tau(n)).
Cf. A265913 (tau(a(n))).

Programs

A273651 a(n) = A000594(p) mod p, where p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 10, 7, 1, 24, 21, 31, 30, 31, 27, 29, 14, 49, 64, 19, 67, 37, 20, 56, 20, 74, 50, 34, 73, 29, 109, 64, 4, 137, 66, 32, 154, 64, 106, 51, 119, 97, 95, 110, 63, 102, 169, 28, 166
Offset: 1

Views

Author

Seiichi Manyama, May 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[RamanujanTau@ #, #] & /@ Prime@ Range@ 80 (* Michael De Vlieger, May 27 2016 *)
  • PARI
    a(n,p=prime(n))=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756%p \\ Charles R Greathouse IV, Jun 07 2016
    
  • Python
    from sympy import prime, divisor_sigma
    def A273651(n):
        p = prime(n)
        return -1680*sum(pow(i,4,p)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1,p+1>>1)) % p # Chai Wah Wu, Nov 08 2022
  • Ruby
    require 'prime'
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      s10 = [s1 - 1, m].min
      (0..s10).each{|i|
        s20 = [s2 - 1, m - i].min
        (0..s20).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary
    end
    def power(ary, n, m)
      return [1] if n == 0
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A000594(n)
      ary = Array.new(n + 1, 0)
      i = 0
      j, k = 2 * i + 1, i * (i + 1) / 2
      while k <= n
        i & 1 == 1? ary[k] = -j : ary[k] = j
        i += 1
        j, k = 2 * i + 1, i * (i + 1) / 2
      end
      power(ary, 8, n).unshift(0)[1..n]
    end
    def A273651(n)
      p_ary = Prime.each.take(n)
      t_ary = A000594(p_ary[-1])
      p_ary.inject([]){|s, i| s << t_ary[i - 1] % i}
    end
    p A273651(n)
    

Formula

for n > 1, a(n) = -1680*Sum_{i=1..(p-1)/2} i**4*sigma(i)*sigma(p-i) mod p where p = prime(n). - Chai Wah Wu, Nov 08 2022

A338558 Absolute value q such that tau(p) == q (mod p), where p = prime(n) and tau(i) = A000594(i).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 7, 7, 1, 5, 10, 6, 11, 12, 20, 24, 14, 12, 3, 19, 6, 37, 20, 33, 20, 27, 50, 34, 36, 29, 18, 64, 4, 2, 66, 32, 3, 64, 61, 51, 60, 84, 95, 83, 63, 97, 42, 28, 61, 67, 32, 10, 29, 73, 37, 92, 16, 120, 31, 107, 120, 141, 145, 39, 12, 74, 150
Offset: 1

Views

Author

Felix Fröhlich, Dec 21 2020

Keywords

Comments

These are essentially the values that can be used to define "near-misses" in a search of terms for A007659, similar to how "near-Wieferich primes", "near-Wilson primes" and "near-Wall-Sun-Sun primes" are defined in searches for Wieferich primes (A001220), Wilson primes (A007540) and Wall-Sun-Sun (Fibonacci-Wieferich) primes.

Crossrefs

A-values: A258367 (near-Wieferich), A250406 (near-Wilson), A244801 and A241014 (near-Wall-Sun-Sun), A260209 and A260210 (near-Wolstenholme).

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n]}, Min[Abs[Mod[RamanujanTau[p], {-p, p}]]]]; Array[a, 100] (* Amiram Eldar, Jan 10 2025 *)
  • PARI
    a(n) = my(p=prime(n)); abs(centerlift(Mod(ramanujantau(p), p)))

Formula

a(n) = 0 iff prime(n) is a term of A007659.

A296580 Odd primes p such that tau(p) is congruent to (p-1)/2 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

191, 5399, 1259393
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2017

Keywords

Comments

a(4) > 10^7.
There is no odd prime p (< 10^7) such that tau(p) is congruent to (p+1)/2 (mod p).

Examples

			tau(191) = 2762403350592 and 2762403350592 == 95 mod 191, so a(1) = 191.
tau(5399) = -616400667743946780600 and -616400667743946780600 == 2699 mod 5399, so a(2) = 5399.
tau(1259393) = -600367974333827988240021654527358 and -600367974333827988240021654527358 == 629696 mod 1259393, so a(3) = 1259393.
		

Crossrefs

Showing 1-10 of 11 results. Next