cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A297124 Numbers having an up-first zigzag pattern in base 3; see Comments.

Original entry on oeis.org

5, 15, 16, 46, 47, 48, 50, 138, 140, 141, 142, 145, 146, 150, 151, 415, 416, 420, 421, 424, 425, 426, 428, 435, 437, 438, 439, 451, 452, 453, 455, 1245, 1247, 1248, 1249, 1261, 1262, 1263, 1265, 1272, 1274, 1275, 1276, 1279, 1280, 1284, 1285, 1306, 1307
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2018

Keywords

Comments

A number n having base-b digits d(m), d(m-1), ..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297124..A297127 partition the natural numbers. See the guide at A297146.

Examples

			Base-3 digits of 1307: 1,2,1,0,1,0,1, with pattern UDUDU, so that 1307 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
    b = 3; t = Table[a[n, b], {n, 1, 10*z}];
    u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &]   (* A297124 *)
    v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &]  (* A297125 *)
    Complement[Range[z], Union[u, v]]  (* A297126 *)

A297125 Numbers having a down-first zigzag pattern in base 3; see Comments.

Original entry on oeis.org

3, 6, 7, 10, 11, 19, 20, 21, 23, 30, 32, 33, 34, 57, 59, 60, 61, 64, 65, 69, 70, 91, 92, 96, 97, 100, 101, 102, 104, 172, 173, 177, 178, 181, 182, 183, 185, 192, 194, 195, 196, 208, 209, 210, 212, 273, 275, 276, 277, 289, 290, 291, 293, 300, 302, 303, 304
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2018

Keywords

Comments

A number n having base-b digits d(m), d(m-1), ..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297124..A297127 partition the natural numbers. See the guide at A297146.

Examples

			Base-3 digits of 307: 1,0,2,1,0,1, with pattern DUDU, so that 307 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
    b = 3; t = Table[a[n, b], {n, 1, 10*z}];
    u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &]   (* A297124 *)
    v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &]  (* A297125 *)
    Complement[Range[z], Union[u, v]]  (* A297126 *)

A297494 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^10*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

513, 20708, 584874, 4714408, 72449100, 200562418, 1012788198, 1953009460, 6172747128, 24788658690, 37242612640, 107770200778, 198936710910, 265200653548, 449592659568, 931777815258, 1775665528380, 2155635964450, 3812897562148, 5368106367720, 6351988507678
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), A297492 (m=6), A297493 (m=8), this sequence (m=10).

Formula

Let b(n) = 42*n^6 - 90*n^4 - 75*n^3 - 35*n^2 - 9*n - 1.
a(n) = b(prime(n)) - tau(prime(n)) where tau(n)=A000594(n) is Ramanujan's tau function.
So tau(prime(n)) + 1 == -a(n) (mod prime(n)).

A297122 a(n) = n^5*H(n) where H() is the Hurwitz class number.

Original entry on oeis.org

0, 0, 0, 81, 512, 0, 0, 16807, 32768, 0, 0, 161051, 331776, 0, 0, 1518750, 1572864, 0, 0, 2476099, 6400000, 0, 0, 19309029, 15925248, 0, 0, 19131876, 34420736, 0, 0, 85887453, 100663296, 0, 0, 105043750, 151165440, 0, 0, 360896796, 204800000, 0, 0, 147008443
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = n^5*qfbhclassno(n)}

Formula

a(n) = n^5*A259825(n)/12.
a(4*n+1) = a(4*n+2) = 0.

A297123 a(n) = 462*n^6 + 330*n^4 - 165*n^3 + 55*n^2 - 11*n + 1.

Original entry on oeis.org

1, 672, 33727, 359536, 1967109, 7405696, 21949027, 55092192, 122381161, 247574944, 465140391, 823079632, 1386090157, 2239057536, 3490880779, 5278630336, 7772038737, 11178323872, 15747344911, 21777090864, 29619501781, 39686622592, 52457089587
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = 462*n^6+330*n^4-165*n^3+55*n^2-11*n+1}
    
  • PARI
    Vec((1 + 665*x + 29044*x^2 + 137524*x^3 + 135139*x^4 + 29243*x^5 + 1024*x^6) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Dec 26 2017

Formula

From Colin Barker, Dec 26 2017: (Start)
G.f.: (1 + 665*x + 29044*x^2 + 137524*x^3 + 135139*x^4 + 29243*x^5 + 1024*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6.
(End)

A297424 a(n) = tau((10^n)-th prime) where tau(n)=A000594(n) is Ramanujan's tau function.

Original entry on oeis.org

-24, 128406630, -1695266465052058, -4467161474022023509680, 2643202687128887204371152330, 5631587063815097155948902224731910, -6022712388820421179671063354886818730888, 3519878895631571325515625172934456394359869922, 452493700789420934344344052367209646628330983653992
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ramanujantau(prime(10^n))}

Formula

a(n) = A076847(10^n) = A000594(A006988(n)).
Showing 1-6 of 6 results.