A076888 a(n) is the number of divisors of the n-th positive palindromic number.
1, 2, 2, 3, 2, 4, 2, 4, 3, 2, 4, 4, 6, 4, 8, 4, 8, 6, 2, 4, 3, 2, 4, 2, 4, 6, 2, 2, 4, 6, 8, 8, 6, 18, 4, 10, 8, 6, 4, 2, 4, 6, 4, 2, 6, 2, 2, 4, 6, 12, 8, 8, 12, 4, 10, 8, 9, 8, 4, 4, 12, 4, 4, 8, 4, 6, 12, 8, 8, 16, 4, 12, 8, 10, 12, 9, 8, 16, 4, 4, 2, 4, 6, 2, 4, 8, 2, 2, 8, 4, 18, 4, 10, 16, 12, 4
Offset: 1
Examples
a(11) = 4 because there are 4 divisors of 11th positive palindromic number (i.e., 22).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
palQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn]]; DivisorSigma[ 0,#]&/@ Select[Range[1000],palQ] (* Harvey P. Dale, Nov 29 2014 *)
-
Python
from sympy import divisor_count def A076888(n): y = 10*(x:=10**(len(str(n+1>>1))-1)) return divisor_count(int((c:=n+1-x)*x+int(str(c)[-2::-1] or 0) if n+1
Chai Wah Wu, Jul 24 2024