cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077020 a(n) is the unique odd positive solution x of 2^n = 7x^2+y^2.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 7, 3, 17, 11, 23, 45, 1, 91, 89, 93, 271, 85, 457, 627, 287, 1541, 967, 2115, 4049, 181, 8279, 7917, 8641, 24475, 7193, 41757, 56143, 27371, 139657, 84915, 194399, 364229, 24569, 753027, 703889, 802165, 2209943, 605613
Offset: 3

Views

Author

Ed Pegg Jr, Oct 17 2002

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.

Examples

			G.f. = x^3 + x^4 + x^5 + 3*x^6 + x^7 + 5*x^8 + 7*x^9 + 3*x^10 + 17*x^11 + ...
a(3)=1 since 2^3=8=7*1^2+1^2, a(6)=3 since 2^6=64=7*3^2+1^2.
		

References

  • A. Engel, Problem-Solving Strategies. p. 126.

Crossrefs

a(n)=abs(A001607(n-2)).
Cf. A077021.

Formula

a(n) = 2^(n-2) * a(4-n) for all n in Z. - Michael Somos, Jan 05 2017
0 = 8*a(n)^2 + 2*a(n+1)^2 - a(n+2)^2 - a(n+3)^2 for all n in Z. - Michael Somos, Jan 05 2017
2*a(n) + a(n+1) = a(n+2) or a(n+3). - Michael Somos, Jan 05 2017