A077050 Left Moebius transformation matrix, M, by antidiagonals.
1, -1, 0, -1, 1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1
Offset: 1
Examples
Northwest corner: 1 0 0 0 0 0 -1 1 0 0 0 0 -1 0 1 0 0 0 0 -1 0 1 0 0 -1 0 0 0 1 0 1 -1 -1 0 0 1
Links
- C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
Programs
-
PARI
nn=10; matrix(nn, nn, n, k, if (n % k, 0, 1))^(-1) \\ Michel Marcus, May 21 2015
Formula
M = T^(-1), where T is the left summatory matrix, A077049.
Comments