cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077057 Minimal positive solution a(n) of Diophantine equation a(n)^2 - a(n)*b(n) - G(n)*b(n)^2 = +1 or -1 with G(n) := A078358(n). The companion sequence is b(n)=A077058(n).

Original entry on oeis.org

1, 2, 5, 3, 3, 27, 7, 37, 4, 4, 171, 22, 9, 14, 1193, 5, 5, 553, 16, 6173, 11, 45, 143, 849, 6, 6, 18339, 94, 1893, 103, 13, 33, 2353, 115, 12703, 7, 7, 67115, 701, 73, 59, 1891117, 15, 551427, 23, 49771, 39, 4105015, 8, 8, 24673, 41, 75585293, 25, 9095891, 989, 17, 386, 6445, 87, 771, 1385
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

This equation can also be written as (2*a(n) - b(n))^2 - D(n)*b(n)^2 = +4 or -4 with D(n) := A077425(n) = 1 + 4*G(n).
This is from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values which solve the above mentioned Diophantine equations.
For Pell equation x^2 - D*y^2 = +4, see A077428 and A078355. For Pell equation x^2 - D*y^2 = -4, see A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Programs

  • Mathematica
    g[n_] := Ceiling[Sqrt[n]] + n - 1; r[n_] := Reduce[an > 0 && bn > 0 && (an ^2 - an*bn - g[n]*bn^2 == 1 || an^2 - an*bn - g[n]*bn^2 == - 1), {an, bn}, Integers] /. C -> c; ab[n_] := DeleteCases[ Flatten[ Table[{an, bn} /. {ToRules[r[n]]} // Simplify, {c[1], 0, 1}], 1], an | bn]; a[n_] := a[n] = Min[ab[n][[All, 1]]]; Table[Print[{n, a[n]}]; a[n], {n, 1, 62}] (* Jean-François Alcover, Oct 04 2012 *)

Formula

a(n) = (A078361(n) + A077058(n)) / 2. [Max Alekseyev, Feb 06 2010]

Extensions

More terms from Max Alekseyev, Feb 06 2010
a(9), a(33), a(54) corrected (after notice by Jean-François Alcover); a(58) through a(62) added. - Wolfdieter Lang, Oct 04 2012

A078361 Minimal positive solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 or -4 with D(n)=A077425(n). The companion sequence is b(n)=A077058(n).

Original entry on oeis.org

1, 3, 8, 5, 5, 46, 12, 64, 7, 7, 302, 39, 16, 25, 2136, 9, 9, 1000, 29, 11208, 20, 82, 261, 1552, 11, 11, 33710, 173, 3488, 190, 24, 61, 4354, 213, 23550, 13, 13, 124846, 1305, 136, 110, 3528264, 28, 1030190, 43, 93102, 73, 7688126, 15, 15, 46312, 77
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426 (this second case excludes in Perron's table the D values with a 'Teilnenner' in brackets).
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions is a(n)=2*x(n)-y(n) and b(n)=y(n). If D(n)=A077425(n) is not in A077426 then the equation with -4 has no solution and a(n) and b(n) are the minimal solutions of the a(n)^2 - D(n)*b(n)^2 = +4 equation. If D(n)=A077425(n) is in A077426 then the a(n) and b(n) values are the minimal solution of the a(n)^2 - D(n)*b(n)^2 = -4 equation. In this case a(+,n)= a(n)^2+2 and b(+,n)=a(n)*b(n) are the minimal solution of a^2 - D(n)*b^2 = +4.
For Pell equation a^2 - D*b^2 = +4, see A077428 and A078355. For Pell equation a^2 - D*b^2 = -4, see A078356 and A078357.

Examples

			29=D(5)=A077425(5) is A077426(4), hence a(5)=5 and b(5)=A077058(5)=1 solve a^2 - 29*b^2=-4 minimally and a(+,5)=a(5)^2+2=27 with b(+,5)=a(5)*b(5)=5*1=5 solve a^2 - 29*b^2=+4 minimally. See also A077428 with companion A078355.
21=D(4)=A077425(4) is not in A077426, hence a(4)=5 and b(4)=A077058(4)=1 give the solution with minimal positive b of a^2 - 21*b^2=+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Extensions

More terms from Matthew Conroy, Apr 20 2003

A053373 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of y for n == 1 (mod 4).

Original entry on oeis.org

1, 1, 2, 1, 1, 8, 2, 10, 1, 40, 5, 2, 3, 250, 1, 1, 106, 3, 1138, 2, 8, 25, 146, 2968, 15, 298, 16, 2, 5, 17, 1856, 1, 1, 9384, 97, 10, 253970, 2, 72664, 3, 6440, 5, 521904, 1, 1, 3034, 5, 9148450, 1084152, 117, 2, 746, 10, 88, 157, 126890, 1, 1, 1311, 56, 287
Offset: 1

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Comments

Entries are indexed by values of n from A039955.
Subsequence of A077058 excluding terms for which A077425(n) is not squarefree. - Max Alekseyev, Dec 12 2012

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Mathematica
    2*NumberFieldFundamentalUnits[ Sqrt[#] ][[1, 2, 2]] & /@ Select[ Range[5, 309, 4], SquareFreeQ ]  (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    forstep(n=5,1000,4, if(!issquarefree(n),next); print1( 2*polcoeff(lift(bnfinit(x^2-n).fu[1]),1), ", " )) /* Max Alekseyev */

A217470 The Diophantine equation x^2 - x*y - G*y^2 = -1, G a positive integer, D = 4*G + 1 not a perfect square, has no solution precisely for G = a(n).

Original entry on oeis.org

5, 8, 11, 14, 17, 19, 23, 26, 29, 32, 33, 35, 38, 40, 41, 44, 47, 50, 51, 52, 53, 54, 55, 59, 61, 62, 63, 65, 68, 71, 74, 75, 76, 77, 80, 82, 83, 85, 86, 89, 92, 94, 95, 96, 98, 101
Offset: 1

Views

Author

Wolfdieter Lang, Oct 04 2012

Keywords

Comments

See the Perron reference for the theorem which by negation implies that this quadratic Diophantine equation has no solution if and only if A077427 is even.
See the pairs (x, y) = (A077057, A077058) which for these a(n) values are the smallest positive solutions of the Diophantine equation x^2 - x*y - a(n)*y^ = +1.
In the table on p. 108 of the Perron reference these a(n) values, called there also G, are the ones were in the third column numbers in brackets appear.
The case D = 4*G + 1 = m^2 > 1 has trivially no solutions: the equation is then X^2 - Y^2 = -4, with X = |2*x-y|, Y = |m*y|. X and Y are either both even or both odd. In the first case one is led to the equation v^2 - w^2 = (v-w)*(v+w)= -1, with X = 2*v and Y = 2*w, and there is only the solution (v,w) = (0,1), hence 2*x = y, m*y = 2. But then m=2 and y=1 with non-integer x solution. In the other case X = 2*v+1 and Y = 2*w+1, v not w, leading to v + w + 1 = -1 with no positive integer solution. Thanks to T. D. Noe for pointing out that one has to mention that these values G = A002378(k), k>=1, with D a perfect (odd) square, are here not included.

Examples

			a(1) = 5 because 5 = A078358(4) and A077427(4) = 2, which is even.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Formula

a(n) gives the increasingly ordered values for G from A078358 which appear at position k where A077427(k) is even, for k>=1. The next even number in A077427 appears for k = 6 and
A078358(6) = 8, hence a(2) = 8.
Showing 1-4 of 4 results.