A077133 a(n) is the difference between the sum of the first n even-indexed primes and the sum of the first n odd-indexed primes.
1, 3, 5, 7, 13, 19, 21, 27, 29, 33, 39, 45, 49, 53, 57, 61, 63, 65, 71, 77, 79, 81, 83, 95, 97, 103, 113, 119, 121, 125, 135, 139, 143, 149, 151, 157, 163, 167, 175, 183, 185, 187, 191, 199, 201, 213, 217, 221, 233, 251, 261, 267, 273, 279, 281, 287, 289, 299
Offset: 1
Keywords
Examples
a(2) = 3 as the sum of the first 2 even-indexed primes is prime(2) + prime(4) = 3 + 7 = 10, the sum of the first 2 odd-indexed primes is prime(1) + prime(3) = 2 + 5 = 7 and 10 - 7 = 3. [edited by _Paolo Xausa_, Apr 12 2023]
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A008347 := proc(n) option remember; if n = 0 then 0 else abs(A008347(n-1)-ithprime(n)); fi; end proc: seq(A008347(2n),n=1..80); # Ridouane Oudra, Aug 31 2019
-
Mathematica
Table[ Sum[ Prime[2i], {i, 1, n}] - Sum[ Prime[2i - 1], {i, 1, n}], {n, 1, 60}] A077133[nmax_]:=Accumulate[Prime[Range[2,2nmax,2]]-Prime[Range[1,2nmax,2]]];A077133[100] (* Paolo Xausa, Apr 12 2023 *)
-
PARI
my(pc=1, p1s=0, p2s=0); forprime (p=2, 500, pc=!pc; if (pc, p1s+=p, p2s+=p); if (pc,print1(p1s-p2s, ", ")))
Formula
a(n) = Sum_{i=0..n-1} (prime(2*i+2) - prime(2*i+1)).
a(n) = A008347(2n). - Ridouane Oudra, Aug 31 2019
Extensions
Edited and extended by Robert G. Wilson v, Nov 30 2002
Name clarified by Paolo Xausa, Apr 12 2023
Comments