A077177 Number of primitive Pythagorean triangles with perimeter equal to A002110(n), the product of the first n primes.
0, 0, 1, 0, 1, 2, 3, 5, 8, 17, 34, 59, 111, 213, 396, 746, 1413, 2690, 5147, 9826, 18885, 36269, 69952, 134949, 260743, 504636, 978311, 1899832, 3692980, 7190329, 13994206, 27279898, 53195986
Offset: 1
Examples
a(5) = 1 since there is exactly one primitive Pythagorean triangle with perimeter 2*3*5*7*11; its edge lengths are (132, 1085, 1093). a(7) = 3; the 3 triangles have edge lengths (70941, 214060, 225509), (96460, 195789, 218261) and (142428, 156485, 211597).
References
- A. S. Anema, "Pythagorean Triangles with Equal Perimeters", Scripta Mathematica, vol. 15 (1949) p. 89.
- Albert H. Beiler, "Recreations in the Theory of Numbers", chapter XIV, "The Eternal Triangle", pp. 131, 132.
- F. L. Miksa, "Pythagorean Triangles with Equal Perimeters", Mathematics, vol. 24 (1950), p. 52.
Links
- Randall L. Rathbun, Equal Perimeter primitive right triangles
Programs
-
Mathematica
a[n_] := Length[Select[Divisors[s=Times@@Prime/@Range[2, n]], s<#^2<2s&]]
-
PARI
semi_peri(p)= {local(q,r,ct,tot); ct=0; tot=0; pt=0; fordiv(p,q,r=p/q-q; if(r<=q&&r>0,print(q,",",r," [",gcd(q,r),"] "); if(gcd(q,r)==1,ct=ct+1; if(q*r%2==0,pt=pt+1; ); ); tot=tot+1); ); print("semiperimeter:"p," Total sets:",tot," Coprime:",ct," Primitive:",pt); } /* Lists all pairs q,r such that the triangle with edge lengths (q^2-r^2, 2qr, q^2+r^2) has semiperimeter p. */
Extensions
Edited by Dean Hickerson, Dec 18 2002
Comments