A077202 a(1) = 1, a(n) = smallest number such that the concatenation of two successive terms gives a prime which has not occurred earlier.
1, 1, 3, 1, 7, 1, 9, 7, 3, 7, 9, 11, 3, 11, 17, 3, 13, 1, 27, 1, 37, 3, 17, 9, 19, 1, 39, 7, 19, 3, 31, 19, 7, 27, 7, 33, 7, 39, 11, 23, 3, 47, 9, 29, 3, 49, 1, 49, 9, 37, 9, 41, 9, 47, 21, 1, 51, 13, 19, 9, 53, 23, 9, 67, 3, 53, 33, 13, 21, 11, 29, 17, 21, 13, 27, 11, 51, 19, 13, 61
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A082238.
Programs
-
Maple
b:= proc() true end: a:= proc(n) option remember; local h, k, p; if n=1 then 1 else h:= a(n-1); for k do p:=parse(cat(h,k)); if b(p) and isprime(p) then break fi od; b(p):= false; k fi end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 18 2015
-
PARI
A077202(nmax)= { local(a,tst,hadp,hSet) ; a=[1] ; hadp=[1] ; for(n=2,nmax, for(new=1,10000, tst=Str(eval(a[n-1]) eval(new)) ; tst=eval(tst) ; if(isprime(tst), hSet=Set(hadp) ; if( setsearch(hSet,tst)==0, hadp=concat(hadp,tst) ; a=concat(a,new) ; break ; ) ; ) ; ) ; ) ; return(a) ; } { print(A077202(80)) ; } \\ R. J. Mathar, May 19 2006
Extensions
Corrected and extended by R. J. Mathar, May 19 2006
Offset corrected by Alois P. Heinz, Sep 18 2015
Comments