A077239 Bisection (odd part) of Chebyshev sequence with Diophantine property.
7, 37, 215, 1253, 7303, 42565, 248087, 1445957, 8427655, 49119973, 286292183, 1668633125, 9725506567, 56684406277, 330380931095, 1925601180293, 11223226150663, 65413755723685, 381259308191447, 2222142093424997, 12951593252358535, 75487417420726213
Offset: 0
Examples
37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Crossrefs
Cf. A077242 (even and odd parts).
Programs
-
Mathematica
Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}] (* Jean-François Alcover, Dec 19 2013 *)
-
PARI
Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
Formula
a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7.
a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
G.f.: (7-5*x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015
Comments