cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077239 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

7, 37, 215, 1253, 7303, 42565, 248087, 1445957, 8427655, 49119973, 286292183, 1668633125, 9725506567, 56684406277, 330380931095, 1925601180293, 11223226150663, 65413755723685, 381259308191447, 2222142093424997, 12951593252358535, 75487417420726213
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077413(n).
The even part is A077240(n) with Diophantine companion A054488(n).

Examples

			37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37.
		

Crossrefs

Cf. A077242 (even and odd parts).

Programs

  • Mathematica
    Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}]  (* Jean-François Alcover, Dec 19 2013 *)
  • PARI
    Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015

Formula

a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7.
a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
G.f.: (7-5*x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015