A077240 Bisection (even part) of Chebyshev sequence with Diophantine property.
5, 23, 133, 775, 4517, 26327, 153445, 894343, 5212613, 30381335, 177075397, 1032071047, 6015350885, 35060034263, 204344854693, 1191009093895, 6941709708677, 40459249158167, 235813785240325, 1374423462283783, 8010726988462373, 46689938468490455
Offset: 0
Examples
23 = a(1) = sqrt(8*A054488(1)^2 + 17) = sqrt(8*8^2 + 17)= sqrt(529) = 23.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Crossrefs
Cf. A077242 (even and odd parts).
Programs
-
Mathematica
Table[ChebyshevT[n+1, 3] + 2*ChebyshevT[n, 3], {n, 0, 19}] (* Jean-François Alcover, Dec 19 2013 *) LinearRecurrence[{6,-1},{5,23},30] (* Harvey P. Dale, Mar 29 2017 *)
-
PARI
Vec((5-7*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
Formula
a(n) = 6*a(n-1) - a(n-2), a(-1) = 7, a(0) = 5.
a(n) = T(n+1, 3)+2*T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
G.f.: (5-7*x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-4+5*sqrt(2))+(3+2*sqrt(2))^n*(4+5*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015
Comments