cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077240 Bisection (even part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

5, 23, 133, 775, 4517, 26327, 153445, 894343, 5212613, 30381335, 177075397, 1032071047, 6015350885, 35060034263, 204344854693, 1191009093895, 6941709708677, 40459249158167, 235813785240325, 1374423462283783, 8010726988462373, 46689938468490455
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A054488(n).
The odd part is A077239(n) with Diophantine companion A077413(n).

Examples

			23 = a(1) = sqrt(8*A054488(1)^2 + 17) = sqrt(8*8^2 + 17)= sqrt(529) = 23.
		

Crossrefs

Cf. A077242 (even and odd parts).

Programs

  • Mathematica
    Table[ChebyshevT[n+1, 3] + 2*ChebyshevT[n, 3], {n, 0, 19}]  (* Jean-François Alcover, Dec 19 2013 *)
    LinearRecurrence[{6,-1},{5,23},30] (* Harvey P. Dale, Mar 29 2017 *)
  • PARI
    Vec((5-7*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015

Formula

a(n) = 6*a(n-1) - a(n-2), a(-1) = 7, a(0) = 5.
a(n) = T(n+1, 3)+2*T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
G.f.: (5-7*x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-4+5*sqrt(2))+(3+2*sqrt(2))^n*(4+5*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015