cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077247 Combined Diophantine Chebyshev sequences A077245 and A077243.

Original entry on oeis.org

1, 2, 10, 17, 79, 134, 622, 1055, 4897, 8306, 38554, 65393, 303535, 514838, 2389726, 4053311, 18814273, 31911650, 148124458, 251239889, 1166181391, 1978007462, 9181326670, 15572819807, 72284431969, 122604550994, 569094129082
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-5*a(n)^2 + 3*b(n)^2 = 7, with the companion sequence b(n)= A077248(n).
In addition to the comment above: 3*b(n)^2 = 5*a(n-2)*a(n+2) + 112, where b(n) = (a(n+2) - a(n-2))/6 = A077248(n), n >= 2. - Klaus Purath, Aug 12 2021

Examples

			5*a(1)^2 + 7 = 5*4 + 7 = 27 = 3*3^2 = 3*A077248(1)^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,8,0,-1},{1,2,10,17},30] (* Harvey P. Dale, Nov 12 2022 *)

Formula

a(2*k)= A077245(k) and a(2*k+1)= A077243(k), k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-8*x^2+x^4).
From Klaus Purath, Aug 12 2021: (Start)
a(n) = 8*a(n-2) - a(n-4), n >= 4.
a(n) = (a(n-2)*a(n-4) - 168)/a(n-6), n >= 6.
a(n) = (a(n-1)*a(n-2) - 15/2 - 9/2*(-1)^n)/a(n-3), n >= 3. (End)