cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077251 Bisection (even part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

1, 12, 119, 1178, 11661, 115432, 1142659, 11311158, 111968921, 1108378052, 10971811599, 108609737938, 1075125567781, 10642645939872, 105351333830939, 1042870692369518, 10323355589864241, 102190685206272892, 1011583496472864679, 10013644279522373898
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

b(n)^2 - 24*a(n)^2 = 25, with the companion sequence b(n) = A077409(n).
The odd part is A077249(n) with Diophantine companion A077250(n).

Examples

			24*a(1)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077409(1)^2.
		

Programs

Formula

a(n) = 10*a(n-1)- a(n-2), a(-1)=-2, a(0)=1.
a(n) = S(n, 10)+2*S(n-1, 10), with S(n, x) = U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(n, 10)= A004189(n+1).
a(n) = sqrt((A077409(n)^2 - 25)/24).
G.f.: (1+2*x)/(1-10*x+x^2).