cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077316 Triangle read by rows: T(n,k) is the k-th prime = 1 (mod n).

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 5, 13, 17, 29, 11, 31, 41, 61, 71, 7, 13, 19, 31, 37, 43, 29, 43, 71, 113, 127, 197, 211, 17, 41, 73, 89, 97, 113, 137, 193, 19, 37, 73, 109, 127, 163, 181, 199, 271, 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 23, 67, 89, 199, 331, 353
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Examples

			Triangle begins:
   2;
   3,  5;
   7, 13, 19;
   5, 13, 17, 29;
  11, 31, 41, 61, 71;
  ...
		

Crossrefs

Cf. A034694 (first column), A077317 (main diagonal), A077318 (row sums), A077319, A093870, A193869 (row products).

Programs

  • Maple
    Tj := proc(n,k) option remember: local j,p: if(k=0)then return 0:fi: for j from procname(n,k-1)+1 do if(isprime(n*j+1))then return j: fi: od: end: A077316 := proc(n,k) return n*Tj(n,k)+1: end: seq(seq(A077316(n,k),k=1..n),n=1..15); # Nathaniel Johnston, Sep 02 2011
  • Mathematica
    Tj[n_, k_] := Tj[n, k] = Module[{j}, If[k == 0, Return[0]];
       For[j = Tj[n, k-1]+1, True, j++, If[PrimeQ[n*j+1], Return[j]]]];
    T[n_, k_] := n*Tj[n, k]+1;
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Aug 02 2022, after Nathaniel Johnston *)

Extensions

Edited and extended by Franklin T. Adams-Watters, Aug 29 2006