A213801 Number of 3 X 3 0..n symmetric arrays with all rows summing to floor(n*3/2).
4, 13, 29, 57, 96, 153, 226, 323, 440, 587, 759, 967, 1204, 1483, 1796, 2157, 2556, 3009, 3505, 4061, 4664, 5333, 6054, 6847, 7696, 8623, 9611, 10683, 11820, 13047, 14344, 15737, 17204, 18773, 20421, 22177, 24016, 25969, 28010, 30171, 32424, 34803, 37279
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..3..2....2..4..0....0..4..2....1..2..3....1..1..4....4..0..2....2..2..2 ..3..1..2....4..0..2....4..0..2....2..2..2....1..3..2....0..2..4....2..2..2 ..2..2..2....0..2..4....2..2..2....3..2..1....4..2..0....2..4..0....2..2..2 a(2)=5-1=4, a(3)=14-1=13, a(210)=4118206-8269=4109937. - _Luce ETIENNE_, Aug 23 2014
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -a(n-8).
Empirical: G.f. -x*(-4-5*x-3*x^2-7*x^3-x^5-2*x^6+x^7) / ( (x^2+1)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Jul 04 2012
a(n) = (14*n^3+42*n^2+53*n+25+3*(n+1)*(-1)^n+2*((-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+5-(-1)^n)/4)))/32. - Luce ETIENNE, Aug 23 2014
Comments