cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A077410 Combined Diophantine Chebyshev sequences A077249 and A077251.

Original entry on oeis.org

1, 2, 12, 21, 119, 208, 1178, 2059, 11661, 20382, 115432, 201761, 1142659, 1997228, 11311158, 19770519, 111968921, 195707962, 1108378052, 1937309101, 10971811599, 19177383048, 108609737938
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-24*a(n)^2 + b(n)^2 = 25, with the companion sequence b(n)= A077411(n).

Examples

			24*a(2)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077411(2)^2.
		

Programs

  • Magma
    I:=[1,2,12,21]; [n le 4 select I[n] else 10*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    CoefficientList[Series[(1+x)*(1+x+x^2)/(1-10*x^2+x^4), {x,0,50}], x] (* or *) LinearRecurrence[{0,10,0,-1}, {1,2,12,21}, 30] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+x)*(1+x+x^2)/(1-10*x^2+x^4)) \\ G. C. Greubel, Jan 18 2018
    

Formula

a(2*k) = A077251(k) and a(2*k+1) = A077249(k), k>=0.
a(n) = sqrt((A077411(n)^2 - 25)/24).
G.f.: (1+x)*(1+x+x^2)/(1-10*x^2+x^4).
Showing 1-1 of 1 results.