cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077440 Squares and their roots having square decimal digits.

Original entry on oeis.org

0, 1, 100, 10000, 1000000, 1100401, 100000000, 110040100, 10000000000, 10100049001, 11004010000, 1000000000000, 1010004900100, 1100401000000, 100000000000000, 100100004990001, 101000490010000, 110040100000000
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 06 2002

Keywords

Comments

If k is a term, then so is 100 * k. - Robert Israel, Aug 26 2024

Examples

			a(6) = 1100401 = 1049^2.
A019544(8)=441 is not a term, as 441=21^2 and 2 is not a square digit.
		

Crossrefs

a(n) = A077439(n)^2.

Programs

  • Maple
    N:= 30: # for terms of up to 2*N digits
    R:= {1}: T:= {1,9}:
    for d from 2 to N do
      T:= select(t -> convert(convert(t^2 mod 10^d, base,10),set) subset {0,1,4,9}, map(t -> (t, t + 10^(d-1), t + 4*10^(d-1), t + 9*10^(d-1)), T));
      R:= R union select(t -> convert(convert(t^2,base,10),set) subset {0,1,4,9},T);
    od:
    R2:= map(t -> t^2, R):
    Res:= map(t -> seq(t*10^(2*i), i=0..(2*N-ilog10(t)-1)/2), R2) union {0}:
    sort(convert(Res,list)); # Robert Israel, Aug 26 2024
  • Mathematica
    a = {}; Do[d = FromDigits[ ReplaceAll[ IntegerDigits[n, 4], {3 -> 9, 2 -> 4}]]; If[ Union[ Join[ IntegerDigits[d^2], {0, 1, 4, 9}]] == {0, 1, 4, 9}, a = Append[a, d^2]], {n, 0, 3*10^4}]; a

Extensions

Edited by Robert G. Wilson v, Nov 08 2002