cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077447 Numbers k such that (k^2 - 14)/2 is a square.

Original entry on oeis.org

4, 8, 16, 44, 92, 256, 536, 1492, 3124, 8696, 18208, 50684, 106124, 295408, 618536, 1721764, 3605092, 10035176, 21012016, 58489292, 122467004, 340900576, 713790008, 1986914164, 4160273044, 11580584408, 24247848256, 67496592284
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "(n^2 - 14)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = 14.

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Cf. A156649 (R1).

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-1},{4,8,16,44},40] (* Harvey P. Dale, Jul 22 2013 *)

Formula

Limit_{k -> oo} a(2*k+1)/a(2*k) = 2.09383632135605431360 = (9 + 4*sqrt(2))/7 = R1.
Limit_{k -> oo} a(2*k)/a(2*k-1) = 2.78361162489122432754 = (11 + 6*sqrt(2))/7 = R2.
Limit_{k -> oo} a(n)/a(n-2) = 3 + 2*sqrt(2) = RG (Grand Ratio); RG = R1*R2.
For n = 2*k-1, a(n) = [ 2*[(3+2*sqrt(2))^n + (3-2*sqrt(2))^n] - [(3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1)] + [(3+2*sqrt(2))^(n-2) + (3-2*sqrt(2))^(n-2)] ] / 4.
For n = 2*k, a(n) = [ 5*[(3+2*sqrt(2))^n + (3-2*sqrt(2))^n] + [(3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1)] ] / 4.
a(n) = 6*a(n-2) - a(n-4) = 4*A006452(n).
G.f.: -4*x*(x-1)*(x^2+3*x+1) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Jul 03 2011