A077464 Stolarsky-Harborth constant; lim inf_{n->oo} F(n)/n^theta, where F(n) is the number of odd binomial coefficients in the first n rows and theta=log(3)/log(2).
8, 1, 2, 5, 5, 6, 5, 5, 9, 0, 1, 6, 0, 0, 6, 3, 8, 7, 6, 9, 4, 8, 8, 2, 1, 0, 1, 6, 4, 9, 5, 3, 6, 7, 1, 2, 4, 3, 4, 4, 1, 9, 2, 2, 4, 9, 0, 6, 3, 6, 1, 5, 6, 6, 7, 8, 3, 2, 0, 3, 4, 7, 5, 8, 0, 3, 6, 6, 0, 0, 3, 1, 4, 2, 7, 6, 2, 9, 5, 3, 5, 0, 8, 2, 4, 6, 8, 4, 8, 9, 8, 2, 7, 9, 7, 9, 3, 7, 8, 6, 9
Offset: 0
Examples
0.812556559016006387694882...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 145-151.
Links
- Heiko Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc., Vol. 62, No. 1 (1977), pp. 19-22.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See pp. 2, 4.
- Kenneth B. Stolarsky, Digital sums and binomial coefficients, Notices of the American Mathematical Society, Vol. 22, No. 6 (1975), A-669, entire volume.
- Kenneth B. Stolarsky, Power and Exponential Sums of Digital Sums Related to Binomial Coefficient Parity, SIAM J. Appl. Math., Vol. 32, No. 4 (1977), pp. 717-730.
- Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
Comments