A077478 Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1).
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1
Offset: 1
Examples
First few rows of the array R are: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 2, 1, 2, 1, ... 1, 1, 2, 1, 1, 2, 1, ... 1, 2, 1, 3, 1, 2, 1, ... 1, 1, 1, 1, 2, 1, 1, ... 1, 2, 2, 2, 1, 4, 1, ... ... First few rows of the triangle T are: 1; 1, 1; 1, 2, 1; 1, 1, 1, 1; 1, 2, 2, 2, 1; 1, 1, 1, 1, 1, 1; 1, 2, 1, 3, 1, 3, 1; 1, 1, 2, 1, 1, 2, 1, 1; 1, 2, 1, 2, 2, 2, 1, 2, 1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1; ... R(4,2)=2 since 1|2, 1|4 and 2|2, 2|4.
Links
- Stefano Spezia, First 150 antidiagonals of the array, flattened
Programs
-
Mathematica
T[n_,k_]:=DivisorSigma[0,GCD[n,k]]; Flatten[Table[T[n-k+1,k],{n,14},{k,n}]] (* Stefano Spezia, May 23 2021 *)
Formula
R=U*V, where U and V are the summatory matrices (A077049, A077051). The triangle T(n, k) formed by antidiagonals: T(n, k)=tau(gcd(k, n+1-k)) for 1<=k<=n, where tau(m)=A000005(m). [Corrected by Leroy Quet, Apr 08 2009]
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} tau(gcd(n,k))/n^s/k^c = zeta(s)*zeta(c)* zeta(s + c). - Mats Granvik, May 19 2021
Extensions
Edited by N. J. A. Sloane, Jan 11 2009
Comments