cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077478 Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2002

Keywords

Comments

Antidiagonal sums of R, alias row sums of T, are essentially A065608. Diagonal elements of R comprise A000203 (sums of divisors of n).
Antidiagonals of an array formed by A051731 * A051731 (transposed). - Gary W. Adamson, Nov 12 2007
If R(n) is the n X n Redheffer matrix (A143104) and Rt(n) is its transposed matrix, then this sequence seems to be formed by R(n)*Rt(n). - Enrique Pérez Herrero, Feb 21 2012

Examples

			First few rows of the array R are:
  1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 2, 1, 2, 1, ...
  1, 1, 2, 1, 1, 2, 1, ...
  1, 2, 1, 3, 1, 2, 1, ...
  1, 1, 1, 1, 2, 1, 1, ...
  1, 2, 2, 2, 1, 4, 1, ...
  ...
First few rows of the triangle T are:
  1;
  1, 1;
  1, 2, 1;
  1, 1, 1, 1;
  1, 2, 2, 2, 1;
  1, 1, 1, 1, 1, 1;
  1, 2, 1, 3, 1, 3, 1;
  1, 1, 2, 1, 1, 2, 1, 1;
  1, 2, 1, 2, 2, 2, 1, 2, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1;
  ...
R(4,2)=2 since 1|2, 1|4 and 2|2, 2|4.
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=DivisorSigma[0,GCD[n,k]]; Flatten[Table[T[n-k+1,k],{n,14},{k,n}]] (* Stefano Spezia, May 23 2021 *)

Formula

R=U*V, where U and V are the summatory matrices (A077049, A077051). The triangle T(n, k) formed by antidiagonals: T(n, k)=tau(gcd(k, n+1-k)) for 1<=k<=n, where tau(m)=A000005(m). [Corrected by Leroy Quet, Apr 08 2009]
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} tau(gcd(n,k))/n^s/k^c = zeta(s)*zeta(c)* zeta(s + c). - Mats Granvik, May 19 2021

Extensions

Edited by N. J. A. Sloane, Jan 11 2009