cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077640 Smallest term of a run of at least 7 consecutive integers which are not squarefree.

Original entry on oeis.org

217070, 671346, 826824, 1092747, 1092748, 1427370, 2097048, 2779370, 3112819, 3306444, 3597723, 3994820, 4063774, 4442874, 4630544, 4842474, 5436375, 5479619, 5610644, 5634122, 6315019, 6474220, 6626319, 6677864, 7128471, 7216618, 7216619, 7295448, 7507923
Offset: 1

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Examples

			n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}.
		

Crossrefs

Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • MATLAB
    N = 10^7; % to get all terms <= N-6
    T = zeros(1,N);
    for m = 2:floor(sqrt(N))
       T([m^2 : m^2 : N]) = 1;
    end
    S = T(1:N-6).*T(2:N-5).*T(3:N-4).*T(4:N-3).*T(5:N-2).*T(6:N-1).*T(7:N);
    find(S)  % Robert Israel, Feb 03 2016
    
  • Mathematica
    s7[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 6}]]; Do[If[s7[n] == 0, Print[n]], {n, 10^7}]
    Flatten[Position[Partition[SquareFreeQ/@Range[7000000],7,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
    SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,72*10^5}],{1,1,1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    {my(N=10^6, M=0, t, m2); for(m=2,sqrtint(N), t=1; m2=m^2; M=bitor(sum(i=1,N\m^2,t<<=m2),M)); for(i=1,6,M=bitand(M,M>>1)); for(i=0,N,M||break;print1(i+=t=valuation(M,2),",");M>>=t+1)} \\ Works but is much slower than the following (16s for 10^6 vs. 3s for 10^7). Should scale better (~sqrt(n) vs linear) but doesn't because of inefficient implementation of binary operations (copies & re-allocation of very large bitmaps): increasing N from 10^5 to 10^6 multiplies CPU time by a factor of 100!
    
  • PARI
    for(n=1,10^7,forstep(k=6,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016

Formula

A077640 = { A078144[k] | A078144[k+2] = A078144[k]+2 } = { A070284[k] | A070284[k+3] = A070284[k]+3 } etc. Note that A049535 is defined differently. - M. F. Hasler, Feb 01 2016
a(n) = A188347(n) - 3. - Amiram Eldar, Feb 09 2021