A077640 Smallest term of a run of at least 7 consecutive integers which are not squarefree.
217070, 671346, 826824, 1092747, 1092748, 1427370, 2097048, 2779370, 3112819, 3306444, 3597723, 3994820, 4063774, 4442874, 4630544, 4842474, 5436375, 5479619, 5610644, 5634122, 6315019, 6474220, 6626319, 6677864, 7128471, 7216618, 7216619, 7295448, 7507923
Offset: 1
Keywords
Examples
n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..488 from Robert Israel)
Crossrefs
Programs
-
MATLAB
N = 10^7; % to get all terms <= N-6 T = zeros(1,N); for m = 2:floor(sqrt(N)) T([m^2 : m^2 : N]) = 1; end S = T(1:N-6).*T(2:N-5).*T(3:N-4).*T(4:N-3).*T(5:N-2).*T(6:N-1).*T(7:N); find(S) % Robert Israel, Feb 03 2016
-
Mathematica
s7[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 6}]]; Do[If[s7[n] == 0, Print[n]], {n, 10^7}] Flatten[Position[Partition[SquareFreeQ/@Range[7000000],7,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *) SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,72*10^5}],{1,1,1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2017 *)
-
PARI
{my(N=10^6, M=0, t, m2); for(m=2,sqrtint(N), t=1; m2=m^2; M=bitor(sum(i=1,N\m^2,t<<=m2),M)); for(i=1,6,M=bitand(M,M>>1)); for(i=0,N,M||break;print1(i+=t=valuation(M,2),",");M>>=t+1)} \\ Works but is much slower than the following (16s for 10^6 vs. 3s for 10^7). Should scale better (~sqrt(n) vs linear) but doesn't because of inefficient implementation of binary operations (copies & re-allocation of very large bitmaps): increasing N from 10^5 to 10^6 multiplies CPU time by a factor of 100!
-
PARI
for(n=1,10^7,forstep(k=6,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016