A077643 Number of squarefree integers in closed interval [2^n, -1 + 2*2^n], i.e., among 2^n consecutive numbers beginning with 2^n.
1, 2, 3, 5, 9, 19, 39, 79, 157, 310, 621, 1246, 2491, 4980, 9958, 19924, 39844, 79672, 159365, 318736, 637457, 1274916, 2549816, 5099651, 10199363, 20398663, 40797299, 81594571, 163189087, 326378438, 652756861, 1305513511, 2611026987, 5222053970, 10444108084
Offset: 0
Keywords
Examples
For n=4: among the 16 numbers of {16, ..., 31}, nine are squarefree [17, 19, 21, 22, 23, 26, 29, 30, 31], so a(4) = 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..63 (calculated from the b-file at A143658)
Crossrefs
Programs
-
Mathematica
Table[Apply[Plus, Table[Abs[MoebiusMu[2^w+j]], {j, 0, 2^w-1}]], {w, 0, 15}] (* second program *) Length/@Split[IntegerLength[Select[Range[10000],SquareFreeQ],2]]//Most (* Gus Wiseman, Jun 02 2024 *)
-
PARI
{ a(n) = sum(m=1,sqrtint(2^(n+1)-1), moebius(m) * ((2^(n+1)-1)\m^2 - (2^n-1)\m^2) ) } \\ Max Alekseyev, Oct 18 2008
Formula
a(n) = Sum_{j=0..-1+2^n} abs(mu(2^n + j)).
a(n)/2^n approaches 1/zeta(2), so limiting sequence is floor(2^n/zeta(2)), n >= 0. - Wouter Meeussen, May 25 2003
Extensions
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 12 2003
More terms from Wouter Meeussen, May 25 2003
a(25)-a(32) from Max Alekseyev, Oct 18 2008
a(33)-a(34) from Amiram Eldar, Jul 17 2024
Comments