A077677 Squarefree numbers beginning with 1.
1, 10, 11, 13, 14, 15, 17, 19, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 122, 123, 127, 129, 130, 131, 133, 134, 137, 138, 139, 141, 142, 143, 145, 146, 149, 151, 154, 155, 157, 158, 159, 161, 163, 165, 166, 167, 170, 173, 174, 177
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[177], First[IntegerDigits[#]]==1 && SquareFreeQ[#] &] (* Jayanta Basu, May 23 2013 *)
-
PARI
is(n)=n>0 && digits(n)[1]==1 && issquarefree(n) \\ Charles R Greathouse IV, Nov 05 2017
-
PARI
list(lim)=my(v=List([1])); for(d=1,#Str(lim\=1)-1, my(D=10^d); forsquarefree(n=D,min(2*D,lim), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 10 2023
-
Python
from math import isqrt from sympy import mobius def A077677(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) def h(x): return 0 if x<1 else h(2*10**((l:=len(s:=str(x)))-2)-1)-g((m:=10**(l-1))-1)+(g(x) if s[0]=='1' else g((m<<1)-1)) def f(x): return n+x-h(x) return bisection(f,n,n) # Chai Wah Wu, May 06 2025
Extensions
Corrected and extended by Sascha Kurz, Jan 28 2003
Comments