A077680 Squarefree numbers beginning with 4.
41, 42, 43, 46, 47, 401, 402, 403, 406, 407, 409, 410, 411, 413, 415, 417, 418, 419, 421, 422, 426, 427, 429, 430, 431, 433, 434, 435, 437, 438, 439, 442, 443, 445, 446, 447, 449, 451, 453, 454, 455, 457, 458, 461, 462, 463, 465, 466, 467, 469, 470, 471, 473
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
select(numtheory:-issqrfree, [seq(seq(i,i=4*10^d+1 .. 5*10^d-1),d=1..3)]); # Robert Israel, May 07 2025
-
Mathematica
Select[Range[499],First[IntegerDigits[#]]==4&&SquareFreeQ[#]&] (* Harvey P. Dale, Apr 24 2018 *)
-
PARI
is(n)=n>40 && digits(n)[1]==4 && issquarefree(n) \\ Charles R Greathouse IV, Nov 05 2017
-
Python
from functools import lru_cache from math import isqrt from sympy import mobius def A077680(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax @lru_cache(maxsize=None) def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) def h(x): return 0 if x<4 else h(5*10**((l:=len(s:=str(x)))-2)-1)-g(4*10**(l-1)-1)+(g(x) if s[0]=='4' else g(5*10**(l-1)-1) if s[0]>'4' else 0) def f(x): return n+x-h(x) return bisection(f,n,n) # Chai Wah Wu, May 07 2025
Extensions
More terms from Sascha Kurz, Jan 28 2003
Comments