A077745 Numerator of integral_{x=1..2} (x^2-1)^n dx.
1, 4, 38, 582, 12354, 335730, 11127150, 435300390, 19633815810, 1003121039970, 57259773499950, 3611583223860150, 249441581246630850, 18723487284033181650, 1517668796159163197550, 132117536404977132759750
Offset: 0
Examples
If n=3 the integral is 194/35, so a(3) = 7!/(3! 2^3) * 194/35 = 582.
Crossrefs
Cf. A076729.
Programs
-
Mathematica
a[n_] := (2n+1)!/n!/2^n*Integrate[(x^2-1)^n, {x, 1, 2}]
Formula
(-1)^n*(2*n+1)!!*(2*hypergeom([1/2, -n], [3/2], 4)-hypergeom([1/2, -n], [3/2], 1)). - Vladeta Jovovic, Dec 05 2002
E.g.f.: (2/sqrt(1-6*x)-1)/(1+2*x). - Vladeta Jovovic, Dec 14 2003
a(n) ~ 3*(6*n)^n/(sqrt(2)*exp(n)). - Vaclav Kotesovec, Oct 05 2013
Comments